Objective: To prepare and characterize composite scaffolds of a hydroxyapatite (HA) and an alginate having high viscosity. Materials and Methods:HA powder was synthesized using wet chemical precipitation, the alginate powder was extracted from the Sargassum duplicatum seaweed, and the HA/alginate composite scaffolds were prepared by freeze-drying. X-ray diffraction and Fourier transform infrared techniques were utilized to characterize the HA and alginate, and electron microscopy was used to evaluate the HA and the HA/alginate composite scaffolds. The HA/alginate composite scaffold obtained from the commercially available HA and alginate powders were employed as a comparison.Results: Synthesized HAs were identified as the HA phase, which contained absorbed water, phosphate, and carbonate groups. The extracted alginate contained the carboxyl, cyclic ether and hydroxyl groups. The scaffolds prepared from the HA and alginate mixture were three-dimensional and containing interconnected pores with a diameter ranging from 150 to 300 µm and pore walls of a composite construction. Conclusion:A three-dimensional scaffold was produced using a freeze-drying method from a composite of HA and the high viscosity alginate solution. The scaffold was highly porous and showed interconnected pores, with a diameter ranging from 150 to 300 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.