Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.
The scFv-Fc format allows for rapid characterization of candidate scFvs isolated from phage display libraries before conversion into a full-length IgG. This format offers several advantages over the phage display-derived scFv, including bivalent binding, longer half-life, and Fc-mediated effector functions. Here, a detailed method is presented, which describes the cloning, expression, and purification of an scFv-Fc fragment, starting from scFv fragments obtained from a phage display library. This method facilitates the rapid screening of candidate antibodies, prior to a more time-consuming conversion into a full IgG format. Alternatively, the scFv-Fc format may be used in the clinic for therapeutic applications.
Abstract:There is considerable interest in the characterization of novel tumor-associated antigens that lend themselves to antibody-mediated pharmacodelivery strategies. Delta-like 1 homolog protein (DLK1), which exists both as transmembrane protein and in soluble form, shows a restricted pattern of expression in healthy organs, while being overexpressed in some tumors. We have generated a human antibody specific to DLK1 using phage display technology. This reagent was used for a comprehensive characterization of DLK1 expression in freshly frozen sections of normal human adult tissues and of xenografted human tumors. DLK1 was virtually undetectable in most organs, except for placenta which was weakly positive. By contrast, DLK1 exhibited a moderate-to-strong expression in 8/9 tumor types tested. Our analysis shed light on previous conflicting reports on DLK1 expression in health and disease. The study suggests that DLK1 may be considered as a target for antibodymediated pharmacodelivery strategies, in view of the protein's limited expression in normal tissues and its abundance in the interstitium of neoplastic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.