BackgroundAwareness for flea- and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The role of Ixodes ricinus ticks in the natural cycle of Bartonella spp. and the transmission of these bacteria to humans is unclear. Rickettsia spp. have also been reported from as well ticks as also from fleas. However, to date no flea-borne Rickettsia spp. were reported from the Netherlands. Here, the presence of Bartonellaceae and Rickettsiae in ectoparasites was investigated using molecular detection and identification on part of the gltA- and 16S rRNA-genes.ResultsThe zoonotic Bartonella clarridgeiae and Rickettsia felis were detected for the first time in Dutch cat fleas. B. henselae was found in cat fleas and B. schoenbuchensis in ticks and keds feeding on deer. Two Bartonella species, previously identified in rodents, were found in wild mice and their fleas. However, none of these microorganisms were found in 1719 questing Ixodes ricinus ticks. Notably, the gltA gene amplified from DNA lysates of approximately 10% of the questing nymph and adult ticks was similar to that of an uncultured Bartonella-related species found in other hard tick species. The gltA gene of this Bartonella-related species was also detected in questing larvae for which a 16S rRNA gene PCR also tested positive for "Candidatus Midichloria mitochondrii". The gltA-gene of the Bartonella-related species found in I. ricinus may therefore be from this endosymbiont.ConclusionsWe conclude that the risk of acquiring Cat Scratch Disease or a related bartonellosis from questing ticks in the Netherlands is negligible. On the other hand fleas and deer keds are probable vectors for associated Bartonella species between animals and might also transmit Bartonella spp. to humans.
BackgroundVarious tick-borne infections often occur without specific clinical signs and are therefore notoriously hard to diagnose separately in veterinary practice. Longitudinal studies over multiple tick seasons performing clinical, serological and molecular investigations in parallel, may elucidate the relationship between infection and disease. In this regard, six related Rhodesian Ridgeback dogs living as a pack became subject of lifetime studies due to ongoing tick infestations and recurring clinical problems. Blood samples for diagnostic tests were obtained throughout the years 2000 to 2009.MethodsData collected from clinical observations, hemograms, serology and detection of Anaplasma phagocytophilum, either by microscopy or by DNA amplification and typing, were placed in a time line. This dataset essentially presents as a prospective study enabling the association of the Anaplasma infections with occurring disease.ResultsAll six dogs were infected, and two of them developed particular clinical symptoms that could be associated with Anaplasma infections over time. More specifically, episodes of general malaise with fever and purpura with thrombocytopenia and bacterial inclusions in granulocytes, were found concurrently with Anaplasma DNA and specific antibodies in peripheral blood samples. DNA from A. phagocytophilum variant 4 (of 16S rRNA) was found in multiple and sequential samples. DNA-sequences from variant 1 and the human granulocytic ehrlichiosis (HGE) agent were also detected.ConclusionsIn this study two lifelong cases of canine anaplasmosis (CGA) are presented. The data show that dogs can be naturally infected concurrently with A. phagocytophilum variant 1, variant 4 and the HGE agent. The ongoing presence of specific antibodies and Anaplasma DNA in one dog indicates one year of persisting infection. Treatment with doxycycline during recurring clinical episodes in the other dog resulted in transient clinical improvement and subsequent disappearance of specific antibodies and DNA suggesting that re-infection occurred.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2806-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.