Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model.
Wetting is very common phenomenon, and it is well documented that the wettability of a solid depends on the surface density of adsorbed airborne hydrocarbons. This “hydrocarbon hypothesis” has been experimentally confirmed for different surfaces, for example, graphene, TiO2, and SiO2; however, there are no scientific reports describing the influence of airborne contaminants on the water contact angle (WCA) value measured on the polytetrafluoroethylene (PTFE) surface. Using experimental data showing the influence of airborne hydrocarbons on the wettability of graphene, gold and PTFE by water, together with Molecular Dynamics simulation results we prove that the relation between the WCA and the surface concentration of hydrocarbons (n-decane, n-tridecane, and n-tetracosane) is more complex than has been assumed up until now. We show, in contrast to commonly approved opinion, that adsorbed hydrocarbons can increase (graphene, Au) or decrease (PTFE) the WCA of a nanodroplet sitting on a surface. Using classical thermodynamics, a simple theoretical approach is developed. It is based on two adsorbed hydrocarbon states, namely, “carpet” and “dimple”. In the “carpet” state a uniform layer of alkane molecules covers the entire substrate. In contrast, in the “dimple” state, the preadsorbed layer of alkane molecules covers only the open surface. Simple thermodynamic balance between the two states explains observed experimental and simulation results, forming a good starting point for future studies.
Silicon is a widely applied material and the wetting of silicon surface is an important phenomenon. However, contradictions in the literature appear considering the value of the water contact angle (WCA). The purpose of this study is to present a holistic experimental and theoretical approach to the WCA determination. To do this, we checked the chemical composition of the silicon (1,0,0) surface by using the X-ray photoelectron spectroscopy (XPS) method, and next this surface was purified using different cleaning methods. As it was proved that airborne hydrocarbons change a solid wetting properties the WCA values were measured in hydrocarbons atmosphere. Next, molecular dynamics (MD) simulations were performed to determine the mechanism of wetting in this atmosphere and to propose the force field parameters for silica wetting simulation. It is concluded that the best method of surface cleaning is the solvent-reinforced de Gennes method, and the WCA value of silicon covered by SiO2 layer is equal to 20.7° (at room temperature). MD simulation results show that the mechanism of pure silicon wetting is similar to that reported for graphene, and the mechanism of silicon covered by SiO2 layer wetting is similar to this observed recently for a MOF.
It is well established that self-cleaning can be related to the hydrophobic or hydrophilic nature of a surface. Using adsorption chromatography, molecular simulations and wetting dynamics measurements, the self-cleaning properties of a new, strongly water resistant and hydrophilic cystine-containing coordination polymer (CP) were tested. Adsorption isotherms of n-octane and methanol were determined in the range of 313-343 K. Next the isosteric enthalpy of adsorption and the change in adsorption entropy were calculated to explain higher adsorption of methanol than n-butane. Performed chromatographic tests, molecular dynamics simulations and wetting dynamics experiments additionally prove that the Zn(Cys) 2 CP is a promising material for the application in the preperation of self-cleaning surfaces or coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.