This paper presents a practical roll-on/roll-off routing (ROROR) problem arising in the collection of industrial waste. Skip containers, which are used for the waste collection, need to be distributed between, and collected from, a set of customers. Full containers must be driven to dump sites, while empty containers must be returned to the depot to await further assignments. Unlike, the traditional ROROR problem, where vehicles may transport one skip container at a time regardless of whether it is full or not, we consider cases in which a vehicle can transport up to eight containers, at most two of which can be full. We propose a Generalized Set Partitioning formulation of the problem and describe a hybrid column generation procedure to solve it. A fast Tabu Search heuristic is used to generate new columns. The proposed methodology is tested on nine data sets, four of which are actual, real-world problem instances. Results indicate that the hybrid column generation outperforms a purely heuristic approach in terms of both running time and solution quality. High quality solutions to problems containing up to 100 orders can be solved in approximately 15 minutes.
The world's second largest producer of pork, Danish Crown, also provides a fresh meat supply logistics system within Denmark. This is used by the majority of supermarkets in Denmark. This article addresses an integrated vehicle routing and driver scheduling problem arising at Danish Crown in their fresh meat supply logistics system. The problem consists of a 1‐week planning horizon, heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, and a break rule. The objective is to minimize the total delivery cost that is a weighted sum of two kinds of delivery costs. A multilevel variable neighborhood search heuristic is proposed for the problem. In a preprocessing step, the problem size is reduced through an aggregation procedure. Thereafter, the aggregated weekly planning problem is decomposed into daily planning problems, each of which is solved by a variable neighborhood search. Finally, the solution of the aggregated problem is expanded to that of the original problem. The method is implemented and tested on real‐life data consisting of up to 2,000 orders per week. Computational results show that the aggregation procedure and the decomposition strategy are very effective in solving this large scale problem, and our solutions are superior to the industrial solutions given the constraints considered in this work. © 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 58(4), 311–322 2011
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.