This paper presents an overview of the work under development within MAESTRI EU-funded collaborative project. The MAESTRI Total Efficiency Framework (MTEF) aims to advance the sustainability of manufacturing and process industries by providing a management system in the form of a flexible and scalable platform and methodology. The MTEF is based on four pillars: a) an effective management system targeted at process continuous improvement; b) Efficiency assessment tools to support improvements, optimisation strategies and decision support; c) Industrial Symbiosis paradigm to gain value from waste and energy exchange; d) an Internet-of-Things infrastructure to support easy integration and data exchange among shop-floor, business systems and tools.
The paper discusses the outcomes of the conference organized by the InDeal project. The conference took place on 12 December 2018 in Montpellier as part of the EnerGaia energy forum 2018. A holistic interdisciplinary approach for district heating and cooling (DHC) networks is presented that integrates heterogeneous innovative technologies from various scientific sectors. The solution is based on a multi-layer control and modelling framework that has been designed to minimize the total plant production costs and optimize heating/cooling distribution. Artificial intelligence tools are employed to model uncertainties associated with weather and energy demand forecasts, as well as quantify the energy storage capacity. Smart metering devices are utilized to collect information about all the crucial heat substations’ parameters, whereas a web-based platform offers a unique user environment for network operators. Three new technologies have been further developed to improve the efficiency of pipe design of DHC systems: (i) A new sustainable insulation material for reducing heat losses, (ii) a new quick-fit joint for an easy installation, and (iii) a new coating for reducing pressure head losses. The results of a study on the development and optimization of two energy harvesting systems are also provided. The assessment of the environmental, economic and social impact of the proposed holistic approach is performed through a life cycle analysis. The validation methodology of the integrated solution is also described, whereas conclusions and future work are finally given.
InnoWEE is a four-year project (from 2016 to 2020) financed by the European Community that involves ten partners from different European countries, as Greece, Italy, Belgium, Romania, Slovenia, Spain and Poland. The aim is to use the waste materials coming from construction and demolition processes of buildings and include them into a geopolymeric matrix with the purpose of producing prefabricated panels for different applications. Construction and demolition waste (CDW) materials with suitable characteristics have been selected to develop high performance geopolymeric panels for building walls envelopes and radiant panels for indoor walls and ceilings with low environmental impact. Field tests will be carried out in different sites in Europe characterized by different climatic conditions to check the simplicity of the installation procedure and the performance of the panels in terms of energy efficiency and environmental impact.
An overview of the work under development within the EU-funded collaborative project MAESTRI is presented in this chapter. The project provides a framework of new Industrial methodology, integrating several tools and methods, to help industries facing the fourth industrial revolution. This concept, called the MAESTRI Total Efficiency Framework (MTEF), aims to advance the sustainability of manufacturing and process industries by providing a management system in the form of a flexible and scalable platform and methodology. The MTEF is based on four pillars: a) an effective management system targeted at continuous process improvement; b) Efficiency assessment tools to support improvements, optimization strategies and decision-making support; c) Industrial Symbiosis paradigm to gain value from waste and energy exchange; d) an Internet-of-Things infrastructure to support easy integration and data exchange among shop-floor, business systems and MAESTRI tools.
An overview of the work under development within the EU-funded collaborative project MAESTRI is presented in this chapter. The project provides a framework of new Industrial methodology, integrating several tools and methods, to help industries facing the fourth industrial revolution. This concept, called the MAESTRI Total Efficiency Framework (MTEF), aims to advance the sustainability of manufacturing and process industries by providing a management system in the form of a flexible and scalable platform and methodology. The MTEF is based on four pillars: a) an effective management system targeted at continuous process improvement; b) Efficiency assessment tools to support improvements, optimization strategies and decision-making support; c) Industrial Symbiosis paradigm to gain value from waste and energy exchange; d) an Internet-of-Things infrastructure to support easy integration and data exchange among shop-floor, business systems and MAESTRI tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.