Coherent excitation of an ensemble of quantum objects underpins quantum many-body phenomena, and offers the opportunity to realize a quantum memory to store information from a qubit. Thus far, a deterministic and coherent interface between a single quantum system, e.g. a qubit, and such an ensemble has remained elusive. We first use an electron to cool the mesoscopic nuclear-spin ensemble of a semiconductor quantum dot to the nuclear sidebandresolved regime. We then implement an all-optical approach to access these individual quantized electronic-nuclear spin transitions. Finally, we perform coherent optical rotations of a single collective nuclear spin excitation corresponding to a spin wave called a nuclear magnon. These results constitute the building blocks of a dedicated local memory per quantum-dot spin qubit and promise a solid-state platform for quantum-state engineering of isolated many-body systems.
Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, which in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over 98% π-rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann-Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.
We present a numerical investigation of the performance of the micropillar cavity single-photon source in terms of collection efficiency and indistinguishability of the emitted photons in the presence of non-Markovian phonon-induced decoherence. We analyze the physics governing the efficiency using a single-mode model, and we optimize efficiency ε and the indistinguishability η on an equal footing by computing εη as function of the micropillar design parameters. We show that εη is limited to ∼ 0.96 for the ideal geometry due to an inherent trade-off between efficiency and indistinguishability. Finally, we subsequently consider the influence of realistic fabrication imperfections and Markovian pure dephasing noise on the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.