BACKGROUND: In the past years, several studies investigated how distinct immune cell subsets affects post–myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu’s influence. METHODS: We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing) and functional phenotyping to elucidate how the antigen-specific CD4 + T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post–myocardial infarction inflammation. RESULTS: Flow cytometry and scRNA-/ TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, Tgfb1 ) or suppressor immune checkpoints (eg, Pdcd1 ), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas T H 17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post–myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function. CONCLUSIONS: These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.
Background: Myocardial infarction (MI) is a sterile inflammatory condition associated with tissue injury that results in the activation of T helper cell targeting cardiac antigens. However, the differentiation trajectories and in situ activity of heart-specific CD4+T cells activated in the MI context remain poorly understood. Methods: Herein, we combined T-cell receptor transgenic models targeting myocardial protein, single-cell transcriptomics, and functional phenotyping to elucidate how the myosin-specific CD4+ T cells (TCR-M) differentiate in the murine infarcted myocardium and ultimately influence tissue repair. Furthermore, we adoptively transferred heart-specific T-cells that were pre-differentiated in vitro towards pro-inflammatory versus regulatory phenotypic states to dissect how they differentially regulate post-myocardial infarction (MI) inflammation. Results: Flow cytometry and single-cell transcriptomics findings reveled that transferred TCR-M cells rapidly acquired an induced regulatory phenotype (iTreg) in the infarcted myocardium and blunt local inflammation. Myocardial TCR-M cells differentiated into two main lineages enriched with cell activation and pro-fibrotic transcripts (e.g. Tgfb1) or with suppressor immune checkpoints (e.g. Pdcd1), which we also found in human myocardial tissue. These cells produced high levels of latency-associated peptide (LAP) and inhibited interleukine-17 (IL-17) responses. Notably, TCR-M cells that were pre-differentiated in vitro towards a regulatory phenotype maintained a stable in vivo FOXP3 expression and anti-inflammatory activity when adoptively transferred prior to MI induction. In contrast, TCR-M cells that were pre-differentiated in vitro towards a pro-inflammatory TH17 phenotype were partially converted towards a regulatory phenotype in the injured myocardium and blunted myocardial inflammation. Conclusions: These findings reveal that the myocardial milieu provides a suitable environment for iTreg differentiation and reveals novels mechanisms by which the healing myocardium shapes local immunological processes.
The immune system plays a vital role in maintaining tissue integrity and organismal homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant challenge for the immune system: it must quickly substitute dead myocardial with fibrotic tissue while controlling overt inflammatory responses. In this review, we will discuss the central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes and controlling local inflammation in the context of MI. We herein compile recent advances enabled by the use of transgenic mouse models with defined cardiac antigen specificity, explore whole-heart imaging techniques, outline clinical studies and summarize deep-phenotyping conducted by independent labs using single-cell transcriptomics and T-cell repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells to local immune modulation in myeloid and lymphoid lineages. We also discuss how both cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider intriguing novel evidence on how the myocardial milieu takes control of potentially auto-aggressive local immune reactions by shaping myosin-specific T-cell development towards a regulatory phenotype. Finally, we examine the potential use of Treg manipulating drugs in the clinic after MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.