The sensory quality and the contents of quality-determining chemical compounds in unfermented and fermented cocoa from 100 cacao trees (individual genotypes) representing groups of nine genotype spectra (GG), grown at smallholder plantings in the municipality of Waslala, Nicaragua, were evaluated for two successive harvest periods. Cocoa samples were fermented using a technique mimicking recommended on-farm practices. The sensory cocoa quality was assessed by experienced tasters, and seven major chemical taste compounds were quantified by near infrared spectrometry (NIRS). The association of the nine, partially admixed, genotype spectra with the analytical and sensory quality parameters was tested. The individual parameters were analyzed as a function of the factors GG and harvest (including the date of fermentation), individual trees within a single GG were used as replications. In fermented cocoa, significant GG-specific differences were observed for methylxanthines, theobromine-to-caffeine (T/C) ratio, total fat, procyanidin B5 and epicatechin, as well as the sensory attributes global score, astringency, and dry fruit aroma, but differences related to harvest were also apparent. The potential cocoa yield was also highly determined by the individual GG, although there was significant tree-to-tree variation within every single GG. Non-fermented samples showed large harvest-to-harvest variation of their chemical composition, while differences between GG were insignificant. These results suggest that selection by the genetic background, represented here by groups of partially admixed genotype spectra, would be a useful strategy toward enhancing quality and yield of cocoa in Nicaragua. Selection by the GG within the local, genetically segregating populations of seed-propagated cacao, followed by clonal propagation of best-performing individuals of the selected GG could be a viable alternative to traditional propagation of cacao by seed from open pollination. Fast and gentle air-drying of the fermented beans and their permanent dry storage were an efficient and comparatively easy precondition for high cocoa quality.
Theobroma cacao is the only source that allows the production of chocolate. It is of major economic importance for producing countries such as Ecuador, which is the third-largest cocoa producer in the world. Cocoa is classified into two groups: bulk cocoa and aromatic fine flavour cocoa. In contrast to bulk cocoa, fine flavour cocoa is characterised by fruity and floral notes. One of the characteristics of Nacional cocoa, the emblematic cocoa of Ecuador, is its aromatic ARRIBA flavour. This aroma is mainly composed of floral notes whose genetic and biochemical origin is not well-known. This research objective is to study the genetic and biochemical determinism of the floral aroma of modern Nacional cocoa variety from Ecuador. Genome-Wide Association Study (GWAS) was conducted on a population of 152 genotypes of cocoa trees belonging to the population variety of modern Nacional. Genome-Wide Association Study was conducted by combining SSR and SNP genotyping, assaying biochemical compounds (in roasted and unroasted beans), and sensory evaluations from various tastings. This analysis highlighted different areas of association for all types of traits. In a second step, a search for candidate genes in these association zones was undertaken, which made it possible to find genes potentially involved in the biosynthesis pathway of the biochemical compound identified in associations. Our results show that two biosynthesis pathways seem to be mainly related to the floral note of Nacional cocoa: the monoterpene biosynthesis pathway and the L-phenylalanine degradation pathway. As already suggested, the genetic background would therefore appear as largely explaining the floral note of cocoa.
The selection of productive varieties of modern Criollo cocoa, showing fine aromatic qualities in their beans, is of major interest for some producing countries, such as Venezuela. Cultivated populations of Modern Criollo or Trinitario varieties may be suitable for admixture mapping analysis, as large blocks of alleles derived from two identified divergent ancestors, recently admixed, are still preserved, after a few generations of recombination, similar to experimental mapping progenies. Two hundred and fifty-seven individuals from a cultivated population of Modern Criollo were selected and analysed with 92 microsatellite markers distributed along the genome. This population exhibited a wide range of variability for yield factors and morphological features. Population structure analysis identified two main subgroups corresponding to the admixture from the two ancestors Criollo and Forastero. Several significant associations between markers and phenotypic data (yield factors and morphological traits) were identified by a least squares general linear model (GLM) taking into account the population structure and the percentage of admixture of each individual. Results were compared with classical QTL analyses previously reported for other cacao populations. Most markers associated to quantitative traits were very close to QTLs detected formerly for the same traits. Associations were also identified between markers and several qualitative traits including the red pigmentation observed in different organs, mainly associated to common markers in linkage group 4.
A sound understanding of crop history can provide the basis for deriving novel genetic information through admixture mapping. We confirmed this, by using characterization data from an international collection of cocoa, collected 25 years ago, and from a contemporary plantation. We focus on the trees derived from three centuries of admixture between Meso-American Criollo and South American Forastero genomes. In both cacao sets of individuals, linkage disequilibrium extended over long genetic distances along chromosome regions, as expected in populations derived from recent admixture. Based on loose genome scans, genomic regions involved in useful traits were identified. Fifteen genomic regions involved in seed and fruit weight variation were highlighted. They correspond to ten previously identified QTLs and five novel ones. Admixture mapping can help to add value to genetic resources and thus, help to encourage investment in their conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.