The heat equation is parabolic partial differential equation and occurs in the characterization of diffusion progress. In the present work, a new fractional operator based on the Rabotnov fractional-exponential kernel is considered. Next, we conferred some fascinating and original properties of nominated new fractional derivative with some integral transform operators where all results are significant. The fundamental target of the proposed work is to solve the multi dimensional heat equations of arbitrary order by using analytical approach homotopy perturbation transform method and residual power series method, where new fractional operator has been taken in new Yang-Abdel-Aty-Cattani (YAC) sense. The obtained results indicate that solution converges to the original solution in language of generalized Mittag-Leffler function. Three numerical examples are discussed to draw an effective attention to reveal the proficiency and adaptability of the recommended methods on new YAC operator. KEYWORDS HPTM and RPSM, multidimensional heat equations, new fractional derivative, new YAC operator, Prabhakar or generalized Mittag-Leffler function MSC CLASSIFICATION 26A33; 34A08; 34A34; 60G22 Math Meth Appl Sci. 2020;43:6062-6080. wileyonlinelibrary.com/journal/mma
We introduce an alternative to the method of matched asymptotic expansions. In the "traditional" implementation, approximate solutions, valid in different (but overlapping) regions are matched by using "intermediate" variables. Here we propose to match at the level of the equations involved, via a "uniform expansion" whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which to produce the "simplest" set of equations that capture the behavior.
In order to bring a broader outlook on some unusual irregularities observed in wave motions and liquids’ movements, we explore the possibility of extending the analysis of Korteweg–de Vries–Burgers equation with two perturbation’s levels to the concepts of fractional differentiation with no singularity. We make use of the newly developed Caputo-Fabrizio fractional derivative with no singular kernel to establish the model. For existence and uniqueness of the continuous solution to the model, conditions on the perturbation parameters ν, µ and the derivative order α are provided. Numerical approximations are performed for some values of the perturbation parameters. This shows similar behaviors of the solution for close values of the fractional order α.
For a given West African country, we constructed a model describing the spread of the deathly disease called Ebola hemorrhagic fever. The model was first constructed using the classical derivative and then converted to the generalized version using the beta-derivative. We studied in detail the endemic equilibrium points and provided the Eigen values associated using the Jacobian method. We furthered our investigation by solving the model numerically using an iteration method. The simulations were done in terms of time and beta. The study showed that, for small portion of infected individuals, the whole country could die out in a very short period of time in case there is not good prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.