Intraalveolar bubbles and bubble films (the unit structures of the alveolar surface network) have been found in all mammalian species examined to date, including lambs, kids, and rabbit pups and adult mice, rats, rabbits, cats, and pigs. Rabbits were used for the definitive studies. 1) A unit bubble occupies each alveolus and branching airway of the TLU; unit bubbles in clusters correspond with alveolar clusters. 2) The appositions of unit bubble lamellae (films) form a network of liquid channels within the TLUs. The appositions are bubble to bubble (near alveolar entrances, at pores of Kohn, and between ductal bubbles), bubble to epithelial cell surface, and bubble to surface liquid of conducting airways. They rapidly form stable Newtonian black foam films (approximately 7 nm thick) under hydrodynamic conditions expected in vivo. 3) Lamellae of the foam films and bubbles tend to exclude bulk liquid and thus maintain near-zero surface tension. At the same time, the foam film formations--abetted by the constant but small retractive force of tissue recoil--stabilize unit bubble position within the network. 4) Unit bubble mobility in response to applied force increases as liquid accumulates within the network (e.g. (ABSTRACT TRUNCATED)
We investigated the effects of reconstituted basement membrane (a crude extract of the Engelbreth-Holm-Swarm tumor) on type 2 pneumocyte differentiation during long-term culture. Cells were derived from mature 29 d fetal rabbits. Morphology was studied by light and electron microscopy. On thin gel, the cells initially segregated into clumps; they were cuboidal with apical microvilli and contained lamellar bodies, but dedifferentiated by 8 d. On thick gel, epithelial cells associated into spherical clusters surrounding a central lumen. These alveolarlike structures persisted at least 22 d. The cells were cuboidal and had lamellar bodies and intercellular tight junctions; they exhibited polarity, with apical microvilli facing the lumen, basally located nuclei, and gel matrix abutting the basal surface. In contrast, cells cultured on plastic formed colonies, then a monolayer, but dedifferentiated 5-7 d after plating. [14C]Acetate was used to label newly synthesized phospholipids. The amount of disaturated phosphatidylcholine (DSPC), expressed as a percentage of total phosphatidylcholine (PC), was used as an indicator of surfactant lipid production; percentage DSPC synthesized by cells cultured on thick gel did not change significantly, from 55 +/- 3 at 3 d, to 63 +/- 2 at 22 d in culture. DSPC synthesized by cells cultured on plastic decreased from 57 +/- 1% at 3 d to 45 +/- 2% at 22 d (p less than 0.001), which is consistent with the morphologic evidence of dedifferentiation. Synthesis of total PC compared with total phospholipid did not vary with either time in culture or substrate. This study emphasizes the importance of a complex extracellular matrix for maintenance of type 2 pneumocyte differentiation. The system should prove useful for studying the interaction of these cells with basement membrane, including the role of events occurring at the cell surface in modulating expression of a differentiated phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.