The development and improvement of methods to map agricultural land cover are currently major challenges, especially for radar images. This is due to the speckle noise nature of radar, leading to a less intensive use of radar rather than optical images. The European Space Agency Sentinel-1 constellation, which recently became operational, is a satellite system providing global coverage of Synthetic Aperture Radar (SAR) with a 6-days revisit period at a high spatial resolution of about 20 m. These data are valuable, as they provide spatial information on agricultural crops. The aim of this paper is to provide a better understanding of the capabilities of Sentinel-1 radar images for agricultural land cover mapping through the use of deep learning techniques. The analysis is carried out on multitemporal Sentinel-1 data over an area in Camargue, France. The data set was processed in order to produce an intensity radar data stack from May 2017 to September 2017. We improved this radar time series dataset by exploiting temporal filtering to reduce noise, while retaining as much as possible the fine structures present in the images. We revealed that even with classical machine learning approaches (K nearest neighbors, random forest, and support vector machines), good performance classification could be achieved with F-measure/Accuracy greater than 86% and Kappa coefficient better than 0.82. We found that the results of the two deep recurrent neural network (RNN)-based classifiers clearly outperformed the classical approaches. Finally, our analyses of the Camargue area results show that the same performance was obtained with two different RNN-based classifiers on the Rice class, which is the most dominant crop of this region, with a F-measure metric of 96%. These results thus highlight that in the near future these RNN-based techniques will play an important role in the analysis of remote sensing time series.
This study proposes an effective method to map rice crops using the Sentinel-1 SAR (Synthetic Aperture Radar) time series over the Camargue region, Southern France. First, the temporal behavior of the SAR backscattering coefficient over 832 plots containing different crop types was analyzed. Through this analysis, the rice cultivation was identified using metrics derived from the Gaussian profile of the VV/VH time series (3 metrics), the variance of the VV/VH time series (one metric), and the slope of the linear regression of the VH time series (one metric). Using the derived metrics, rice plots were mapped through two different approaches: decision tree and Random Forest (RF). To validate the accuracy of each approach, the classified rice map was compared to the available national data. Similar high overall accuracy was obtained using both approaches. The overall accuracy obtained using a simple decision tree reached 96.3%, whereas an overall accuracy of 96.6% was obtained using the RF classifier. The approach, therefore, provides a simple yet precise and powerful tool to map paddy rice areas.
The research and improvement of methods to be used for crop monitoring are currently major challenges, especially for radar images due to their speckle noise nature. The European Space Agency’s (ESA) Sentinel-1 constellation provides synthetic aperture radar (SAR) images coverage with a 6-day revisit period at a high spatial resolution of pixel spacing of 20 m. Sentinel-1 data are considerably useful, as they provide valuable information of the vegetation cover. The objective of this work is to study the capabilities of multitemporal radar images for rice height and dry biomass retrievals using Sentinel-1 data. To do this, we train Sentinel-1 data against ground measurements with classical machine learning techniques (Multiple Linear Regression (MLR), Support Vector Regression (SVR) and Random Forest (RF)) to estimate rice height and dry biomass. The study is carried out on a multitemporal Sentinel-1 dataset acquired from May 2017 to September 2017 over the Camargue region, southern France. The ground in-situ measurements were made in the same period to collect rice height and dry biomass over 11 rice fields. The images were processed in order to produce a radar stack in C-band including dual-polarization VV (Vertical receive and Vertical transmit) and VH (Vertical receive and Horizontal transmit) data. We found that non-parametric methods (SVR and RF) had a better performance over the parametric MLR method for rice biophysical parameter retrievals. The accuracy of rice height estimation showed that rice height retrieval was strongly correlated to the in-situ rice height from dual-polarization, in which Random Forest yielded the best performance with correlation coefficient R 2 = 0.92 and the root mean square error (RMSE) 16% (7.9 cm). In addition, we demonstrated that the correlation of Sentinel-1 signal to the biomass was also very high in VH polarization with R 2 = 0.9 and RMSE = 18% (162 g·m − 2 ) (with Random Forest method). Such results indicate that the highly qualified Sentinel-1 radar data could be well exploited for rice biomass and height retrieval and they could be used for operational tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.