Kefir, a traditional fermented food, has numerous health benefits due to its unique chemical composition, which is reflected in its excellent nutritional value. Physicochemical and microbial composition of kefir obtained from fermented milk are influenced by the type of the milk, grain to milk ratio, time and temperature of fermentation, and storage conditions. It is crucial that kefir characteristics are maintained during storage since continuous metabolic activities of residual kefir microbiota may occur. This study aimed to examine the nutritional profile of kefir produced in traditional in use conditions by fermentation of ultra-high temperature pasteurized (UHT) semi-skimmed cow milk using argentinean kefir grains and compare the stability and nutritional compliance of freshly made and refrigerated kefir. Results indicate that kefir produced under home use conditions maintains the expected characteristics with respect to the physicochemical parameters and composition, both after fermentation and after refrigerated storage. This work further contributes to the characterization of this food product that is so widely consumed around the world by focusing on kefir that was produced in a typical household setting.
Diet has a fundamental role in the homeostasis of bodily functions, including the skin, which, as an essential protective barrier, plays a crucial role in this balance. The skin and intestine appear to share a series of indirect metabolic pathways, in a dual relationship known as the “gut-skin axis”. Hence, the gut-skin axis might be receptive to modulation via dietary modification, where probiotics can be included, thus representing a potential therapeutic target in inflammatory skin diseases, such as atopic dermatitis (AD), in order to control and/or ameliorate symptoms. Kefir is one of the most ancient fermented foods, with probiotic characteristics that have been associated with a wide variety of health-promoting benefits, and it presents a microbiological diversity that makes its application as a probiotic in the gut-skin relationship of the utmost interest. However, the impact of a diet containing kefir on skin health has yet to be reported in scientific literature. This study aimed to assess the impact of the intake of homemade kefir in the skin of healthy and atopic volunteers. The intervention resulted in a boost on barrier function in both skin types verified only in the respective kefir intake groups. An improvement in the degree of severity of AD was also confirmed for the kefir intake group. Atopic individuals may benefit from kefir intake, especially in regard to their skin hydration. Finally, the effects observed on skin barrier function in this study probably culminate from the effects of all the ingredients in kefir, including the complex microbiota, its metabolites and macro- and micronutrients resulting from the fermentation. This work opens the way for more advanced research on the impact of the probiotic kefir on cutaneous health, further clarifying its mechanism of action namely via gut-skin axis.
The human gastrointestinal (GI) tract is a dynamic system influenced by various environmental factors, including diet and exposure to ingested probiotics, and prone to various functional impairments. These impairments are mostly related to any combination of motility alterations, visceral hypersensitivity, and changes in the mucosa, immune function, and intestinal microbiota. Intestinal microbial imbalance and immunological dysfunction have been linked to several chronic inflammatory disease states, including atopic dermatitis (AD). Disruption of the intestinal microbial balance, known as gut dysbiosis, has been demonstrated to negatively impact skin function by increasing the intestinal permeability. Consequently, the gut–skin axis may be receptive to modulation via dietary modification, namely, via ingestion of probiotics, thus representing interesting potential as an AD therapy. Kefir is an ancient probiotic food that has been demonstrated to positively impact the general condition of the digestive system, including the intestinal microbiota. However, the literature is still scarce on the impact on the gut–skin relationship of a diet containing kefir. This study, continuing research in our group, aimed to evaluate the impact of kefir intake on GI symptoms in healthy and AD skin subjects. Results showed a significant improvement in GI status, namely, in functional constipation, abdominal pain intensity, and abdominal distension, thus supporting the hypothesis that kefir intake is positively associated with improvement in GI status. The existence of a relationship between the improvement in skin parameters and the improvement in GI status after kefir consumption was established, thus reinforcing the role of homemade kefir as a potential modulator of the gut–skin axis in both healthy and atopic individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.