Corticothalamic pathways, responsible for the top-down control of the thalamus display a classical, canonical organization in that every cortical region sends dual, layer 6 (L6) and layer 5 (L5) output to the thalamus. Here we demonstrate a qualitative, region-specific difference in the organization of corticothalamic pathways. We show that L5 pyramidal cells of the frontal, but not other cortical regions establish monosynaptic connection with the inhibitory thalamic reticular nucleus (TRN). The frontal L5-TRN pathway paralleled the L6-TRN projection but displayed distinct morphological and physiological features. The exact spike output of the L5 contacted TRN cells correlated with the level of cortical synchrony. Optogenetic perturbation of the L5-TRN connection disrupted the tight link between cortical and TRN activity. L5-driven TRN cells innervated all thalamic nuclei involved in the control of frontal cortical activity. Our data show that frontal cortical functions require a highly specialized cortical control over intrathalamic inhibitory processes.
Corticothalamic pathways, responsible for the top-down control of the thalamus, have a canonical organization such that every cortical region sends output from both layer 6 (L6) and layer 5 (L5) to the thalamus. Here we demonstrate a qualitative, region-specific difference in the organization of mouse corticothalamic pathways. Specifically, L5 pyramidal cells of the frontal cortex, but not other cortical regions, establish monosynaptic connections with the inhibitory thalamic reticular nucleus (TRN). The frontal L5–TRN pathway parallels the L6–TRN projection but has distinct morphological and physiological features. The exact spike output of the L5-contacted TRN cells correlated with the level of cortical synchrony. Optogenetic perturbation of the L5–TRN connection disrupted the tight link between cortical and TRN activity. L5-driven TRN cells innervated thalamic nuclei involved in the control of frontal cortex activity. Our data show that frontal cortex functions require a highly specialized cortical control over intrathalamic inhibitory processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.