Glomerular targets of autoimmunity in human membranous nephropathy are poorly understood. Here, we used a combined proteomic approach to identify specific antibodies against podocyte proteins in both serum and glomeruli of patients with membranous nephropathy (MN). We detected specific anti-aldose reductase (AR) and anti-manganese superoxide dismutase (SOD2) IgG 4 in sera of patients with MN. We also eluted high titers of anti-AR and anti-SOD2 IgG 4 from microdissected glomeruli of three biopsies of MN kidneys but not from biopsies of other glomerulonephritides characterized by IgG deposition (five lupus nephritis and two membranoproliferative glomerulonephritis). We identified both antigens in MN biopsies but not in other renal pathologies or normal kidney. Confocal and immunoelectron microscopy (IEM) showed co-localization of anti-AR and anti-SOD2 with IgG 4 and C5b-9 in electron-dense podocyte immune deposits. Preliminary in vitro experiments showed an increase of SOD2 expression on podocyte plasma membrane after treatment with hydrogen peroxide. In conclusion, our data support AR and SOD2 as renal antigens of human MN and suggest that oxidative stress may drive glomerular SOD2 expression.
Introduction COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, is a severe systemic thrombotic syndrome that emerged in 2019, with an ensuing pandemic. To evaluate the impact of this disease on placental tissue and perinatal outcome, histological, immunohistochemical and ultrastructural analyses of placental tissue were performed for five cases of pregnant women with COVID-19. Case reports All five pregnant women in this series developed COVID-19 in late pregnancy. Two patients experienced respiratory distress, and computed tomography revealed signs of pneumonia, with bilateral involvement, multiple lobular and subsegmental areas of consolidation and ground-glass opacities. Histological studies of placental tissue revealed the presence of slight signs of maternal vascular underperfusion (MVUs) or foetal vascular underperfusion (FVUs) lesions and mild inflammatory lesions. CD15 immunoreactivity in the placental tissue was low in all cases, demonstrating that in these cases there was not severe foetal hypoxia/asphyxia risk for newborns or distal vascular immaturity. In all cases examined, ultrastructural analyses showed spherical-like coronavirus particles with an electron intermediate-density core as well as projections from the surface as spike-like structures in the syncytiotrophoblasts. At term, all of the women delivered newborns who were negative for SARS-CoV-2 by nasopharyngeal testing in their first day of life. All newborns were exclusively breastfed and were discharged on the 3rd day of life. Conclusions In conclusion, placental patterns in pregnancy due to COVID-19 in the late stage of gestation indicate no evidence of vertical trans-placental SARS-CoV-2 transmission or a significant impact on the perinatal outcome of newborns, in both mild and more severe cases.
Renal auto-immune diseases represent a major source of morbidity in humans. For many years the knowledge on mechanisms of auto-immunity involving the kidney has been uniquely based on animal models. However, these findings often could not be readily translated to humans owing to notably difference in antigen expression by human podocytes. One example is Heymann nephritis (HN), the experimental model of human membranous glomerulonephritis (MGN), which is obtained in rats by injecting antibodies against megalin, a protein that is not present in human glomeruli. Human studies could not be done in the past since sequencing required too much material exceeding what obtainable from tissue biopsies in vivo. Research is now on the way to identify auto-antigens and isolate specific auto-antibodies in humans. New technology developments based on tissue microdissection and proteomical analysis have facilitated the recent discoveries, allowing direct analysis of human tissue in vivo. Major advances on the pathogenesis of MGN, the prototype for the formation and glomerular deposition of auto-antibodies, are now in progress. Two independent groups have, in fact, demonstrated the existence of specific IgG(4) against phospholipase A2 receptor, aldose reductase and Mn-superoxide dismutase in glomerular eluates and in plasma of a prominent part of patients with MGN, suggesting a major role of these proteins as auto-antigens in human MGN. This review will focalize these aspects outlining the contribution of proteomics in most recent developments.
Background: Scientific research on atrial fibrosis in atrial fibrillation (AF) has mainly focused on quantitative or molecular features. The purpose of this study was to perform a clinicoarchitectural/structural investigation of fibrosis to provide one key to understanding the electrophysiological/clinical aspects of AF. Methods: We characterized the fibrosis (amount, architecture, cellular components, and ultrastructure) in left atrial biopsies from 121 patients with persistent/long-lasting persistent AF (group 1; 59 males; 60±11 years; 91 mitral disease–related AF, 30 nonmitral disease–related AF) and from 39 patients in sinus rhythm with mitral valve regurgitation (group 2; 32 males; 59±12 years). Ten autopsy hearts served as controls. Results: Qualitatively, the fibrosis exhibited the same characteristics in all cases and displayed particular architectural scenarios (which we arbitrarily subdivided into 4 stages) ranging from isolated foci to confluent sclerotic areas. The percentage of fibrosis was larger and at a more advanced stage in group 1 versus group 2 and, within group 1, in patients with rheumatic disease versus nonrheumatic cases. In patients with AF with mitral disease and no rheumatic disease, the percentage of fibrosis and the fibrosis stages correlated with both left atrial volume index and AF duration. The fibrotic areas mainly consisted of type I collagen with only a minor cellular component (especially fibroblasts/myofibroblasts; average value range 69–150 cells/mm 2 , depending on the areas in AF biopsies). A few fibrocytes—circulating and bone marrow-derived mesenchymal cells—were also detectable. The fibrosis-entrapped cardiomyocytes showed sarcolemmal damage and connexin 43 redistribution/internalization. Conclusions: Atrial fibrosis is an evolving and inhomogeneous histological/architectural change that progresses through different stages ranging from isolated foci to confluent sclerotic zones which—seemingly—constrain impulse conduction across restricted regions of electrotonically coupled cardiomyocytes. The fibrotic areas mainly consist of type I collagen extracellular matrix and, only to a lesser extent, mesenchymal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.