BackgroundSodium bicarbonate (SB) has been proposed as an ergogenic aid, as it improves high-intensity and resistance exercise performance. However, no studies have yet investigated SB application in CrossFit. This study examined the effects of chronic, progressive-dose SB ingestion on CrossFit-like performance and aerobic capacity.MethodsIn a randomized, double-blind, cross-over trial, 21 CrossFit-trained participants were randomly allocated to 2 groups and underwent 2 trials separated by a 14-day washout period. Participants ingested either up to 150 mg∙kg-1 of SB in a progressive-dose regimen or placebo for 10 days. Before and after each trial, Fight Gone Bad (FGB) and incremental cycling (ICT) tests were performed. In order to examine biochemical responses, blood samples were obtained prior to and 3 min after completing each exercise test.ResultsNo gastrointestinal (GI) side effects were reported during the entire protocol. The overall FGB performance improved under SB by ~6.1% (p<0.001) and it was ~3.1% higher compared to post placebo (PLApost) (p = 0.040). The number of repetitions completed in each round also improved under SB (mean from baseline: +5.8% to +6.4%). Moreover, in ICT, the time to ventilatory threshold (VT) (~8:25 min SBpost vs. ~8:00 min PLApost, p = 0.020), workload at VT (~218 W SBpost vs. ~208 W PLApost, p = 0.037) and heart rate at VT (~165 bpm SBpost vs. ~161 bpm PLApost, p = 0.030) showed higher SBpost than PLApost. Furthermore, the maximum carbon dioxide production increased under SB by ~4.8% (from ~3604 mL∙min-1 to ~3776 mL∙min-1, p = 0.049). Pyruvate concentration and creatine kinase activity before ICT showed higher SBpost than PLApost (~0.32 mmol∙L-1 vs. ~0.26 mmol∙L-1, p = 0.001; ~275 U∙L-1 vs. ~250 U∙L-1, p = 0.010, respectively). However, the small sample size limits the wide-application of our results.ConclusionsProgressive-dose SB ingestion regimen eliminated GI side effects and improved CrossFit-like performance, as well as delayed ventilatory threshold occurrence.
Gastrointestinal side effects are the main problem with sodium bicarbonate (SB) use in sports. Therefore, our study assessed the effect of a new SB loading regimen on anaerobic capacity and wrestling performance. Fifty-eight wrestlers were randomized to either a progressive-dose regimen of up to 100 mg∙kg−1 of SB or a placebo for 10 days. Before and after treatment, athletes completed an exercise protocol that comprised, in sequence, the first Wingate, dummy throw, and second Wingate tests. Blood samples were taken pre- and post-exercise. No gastrointestinal side effects were reported during the study. After SB treatment, there were no significant improvements in the outcomes of the Wingate and dummy throw tests. The only index that significantly improved with SB, compared to the placebo (p = 0.0142), was the time-to-peak power in the second Wingate test, which decreased from 3.44 ± 1.98 to 2.35 ± 1.17 s. There were also no differences in blood lactate or glucose concentrations. In conclusion, although the new loading regimen eliminated gastrointestinal symptoms, the doses could have been too small to elicit additional improvements in anaerobic power and wrestling performance. However, shortening the time-to-peak power during fatigue may be particularly valuable and is one of the variables contributing to the final success of a combat sports athlete.
The glycemic index (GI) of ingested carbohydrates may influence substrate oxidation during exercise and athletic performance. Therefore, the aim of this study was to assess the effect of low- and moderate-GI three-week diets on aerobic capacity and endurance performance in runners. We conducted a randomized crossover feeding study of matched diets differing only in GI (low vs. moderate) in 21 endurance-trained runners. Each participant consumed both, low- (LGI) and moderate-GI (MGI) high-carbohydrate (~60%) and nutrient-balanced diets for three weeks each. At the beginning and end of each diet, participants had their aerobic capacity and body composition measured and performed a 12-min running test. After LGI, time to exhaustion during incremental cycling test (ICT) and distance covered in the 12-min run were significantly increased. The MGI diet led to an increase in maximal oxygen uptake (V˙O2max), but no performance benefits were found after the MGI diet. The LGI and MGI diets improved time and workload at gas exchange threshold (GET) during ICT. The results indicate that a three-week high-carbohydrate LGI diet resulted in a small but significant improvement in athletic performance in endurance runners. Observed increase in V˙O2max on MGI diet did not affect performance.
The aim of this study was the assessment of progressive low-dose sodium bicarbonate (NaHCO 3) supplementation on the anaerobic indices in two bouts of Wingate tests (WT) separated by wrestlingspecific performance test and assessing the gender differences in response. Fifty-one (18 F) wrestlers completed a randomized trial of either a NaHCO 3 (up to 100 mg•kg −1) or a placebo for 10 days. Before and after treatment, athletes completed an exercise protocol that comprised, in sequence, the first WT 1 , dummy throw test (DT), and second WT 2. The number of completed throws increased significantly in males from 19.3 ± 2.6 NaHCO 3pre to 21.7 ± 2.9 NaHCO 3post. ΔWT 2-WT 1 improved particularly in the midsection of 30-s WT on NaHCO 3. However, no significant differences were found in peak power (PP), power drop (PD) and average power (AP) (analyzed separately for each WT), and ΔWT 2-WT 1 in PP and PD. Interaction with gender was significant for AP, PP and PD, every second of WT 1 and WT 2 , as well as DT test. In conclusion, our study suggests that the response to NaHCO 3 may be gender-specific and progressive low-dose NaHCO 3 supplementation allows the advantageous strengthening of wrestlingspecific performance in males. It can also lead to maintenance of high anaerobic power mainly in the midsection of the 30-s Wingate test.
The aim of this study was to assess the effects of probiotic and synbiotic supplementation on glucose metabolism in pregnant women using data from randomized controlled trials. Furthermore, this meta-analysis examines whether the observed effects depend on the presence or absence of gestational diabetes mellitus (GDM), and if the effect is dependent on the type of supplement used (probiotic or synbiotic). We performed a literature search of databases (Medline, Scopus, Web of Knowledge, and Cochrane Library) and identified all relevant randomized controlled trials (RCTs) published prior to May 2019. We compared the effects of probiotic supplementation with the administration of placebos in pregnant women with and without GDM. The systematic review and meta-analysis protocol were registered in the International Prospective Register of Systematic Reviews as number CRD 42019111467. 1119 study participants from 15 selected studies were included. The participants in four studies did not have GDM (being recruited to the study before week 20 of pregnancy) and the participants in the rest of the studies were diagnosed with GDM between weeks 24 and 28 of gestation. The meta-analysis showed that supplementation lowers serum glucose, insulin levels, and HOMA-IR index, but only in pregnant women with GDM. Moreover, both probiotics and synbiotics lower serum insulin level and HOMA-IR index, but the glucose lowering effect is specific only to probiotics and not synbiotics. Probiotic supplementation may improve glucose metabolism in pregnant women with GDM. There is a need for more RCT studies with larger groups to better estimate this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.