ObjectivesMedical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field.DesignScoping review.SettingThree databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison.ResultsOut of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity.ConclusionsThe observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
IntroductionAutomatic brain lesion segmentation from medical images has great potential to support clinical decision making. Although numerous methods have been proposed, significant challenges must be addressed before they will become established in clinical and research practice. We aim to elucidate the state of the art, to provide a synopsis of competing approaches and identify contrasts between them.Methods and analysisWe present the background and study design of a scoping review for automatic brain lesion segmentation methods for conventional MRI according to the framework proposed by Arksey and O’Malley. We aim to identify common image processing steps as well as mathematical and computational theories implemented in these methods. We will aggregate the evidence on the efficacy and identify limitations of the approaches. Methods to be investigated work with standard MRI sequences from human patients examined for brain lesions, and are validated with quantitative measures against a trusted reference. PubMed, IEEE Xplore and Scopus will be searched using search phrases that will ensure an inclusive and unbiased overview. For matching records, titles and abstracts will be screened to ensure eligibility. Studies will be excluded if a full paper is not available or is not written in English, if non-standard MR sequences are used, if there is no quantitative validation, or if the method is not automatic. In the data charting phase, we will extract information about authors, publication details and study cohort. We expect to find information about preprocessing, segmentation and validation procedures. We will develop an analytical framework to collate, summarise and synthesise the data.Ethics and disseminationEthical approval for this study is not required since the information will be extracted from published studies. We will submit the review report to a peer-reviewed scientific journal and explore other venues for presenting the work.
ObjectivesTo determine the reproducibility and replicability of studies that develop and validate segmentation methods for brain tumours on MRI and that follow established reproducibility criteria; and to evaluate whether the reporting guidelines are sufficient.MethodsTwo eligible validation studies of distinct deep learning (DL) methods were identified. We implemented the methods using published information and retraced the reported validation steps. We evaluated to what extent the description of the methods enabled reproduction of the results. We further attempted to replicate reported findings on a clinical set of images acquired at our institute consisting of high-grade and low-grade glioma (HGG, LGG), and meningioma (MNG) cases.ResultsWe successfully reproduced one of the two tumour segmentation methods. Insufficient description of the preprocessing pipeline and our inability to replicate the pipeline resulted in failure to reproduce the second method. The replication of the first method showed promising results in terms of Dice similarity coefficient (DSC) and sensitivity (Sen) on HGG cases (DSC=0.77, Sen=0.88) and LGG cases (DSC=0.73, Sen=0.83), however, poorer performance was observed for MNG cases (DSC=0.61, Sen=0.71). Preprocessing errors were identified that contributed to low quantitative scores in some cases.ConclusionsEstablished reproducibility criteria do not sufficiently emphasise description of the preprocessing pipeline. Discrepancies in preprocessing as a result of insufficient reporting are likely to influence segmentation outcomes and hinder clinical utilisation. A detailed description of the whole processing chain, including preprocessing, is thus necessary to obtain stronger evidence of the generalisability of DL-based brain tumour segmentation methods and to facilitate translation of the methods into clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.