Historically, research examining the use of microbes as a means to optimize black soldier fly (BSF) growth has explored few taxa. Furthermore, previous research has been done at the benchtop scale, and extrapolating these numbers to industrial scale is questionable. The objectives of this study were to explore the impact of microbes as supplements in larval diets on growth and production of the BSF. Three experiments were conducted to measure the impact of the following on BSF life-history traits on (1) Arthrobacter AK19 supplementation at benchtop scale, (2) Bifidobacterium breve supplementation at benchtop scale, and (3) Arthrobacter AK19 and Rhodococcus rhodochrous 21198 as separate supplements at an industrial scale. Maximum weight, time to maximum weight, growth rate, conversion level of diet to insect biomass, and associated microbial community structure and function were assessed for treatments in comparison to a control. Supplementation with Arthrobacter AK19 at benchtop scale enhanced growth rate by double at select time points and waste conversion by approximately 25–30% with no impact on the microbial community. Predicted gene expression in microbes from Arthrobacter AK19 treatment was enriched for functions involved in protein digestion and absorption. Bifidobacterium breve, on the other hand, had the inverse effect with larvae being 50% less in final weight, experiencing 20% less conversion, and experienced suppression of microbial community diversity. For those tested at the industrial scale, Arthrobacter AK19 and R. rhodochrous 21198 did not impact larval growth differently as both resulted in approximately 22% or more greater growth than those in the control. Waste conversion with the bacteria was similar to that recorded for the control. Diets treated with the supplemental bacteria showed increased percent difference in predicted genes compared to control samples for functions involved in nutritional assimilation (e.g., protein digestion and absorption, energy metabolism, lipid metabolism). Through these studies, it was demonstrated that benchtop and industrial scale results can differ. Furthermore, select microbes can be used at an industrial scale for optimizing BSF larval production and waste conversion, while others cannot. Thus, targeted microbes for such practices should be evaluated prior to implementation.
Background Each death event can be characterized by its associated microbes – a living community of bacteria composed of carcass, soil, and insect-introduced bacterial species – a necrobiome. With the possibility for close succession of these death events, it may be beneficial to characterize how the magnitude of an initial death event may impact the decomposition and necrobiomes of subsequent death events in close proximity. In this paper we hope to characterize the microbial communities associated with a proximate subsequent death event, and distinguish any changes within those communities based on the magnitude of an initial death event and the biomass of preexisting carcass (es) undergoing decomposition. For this experiment, 6 feral swine carcasses in containers were placed in the vicinity of preexisting and ongoing carcass decomposition at sites of three different scales of decomposing carcass biomass. Swab samples were collected from the skin and eye sockets of the container pigs and subjected to 16 s rRNA sequencing and OTU assignment. Results PERMANOVA analysis of the bacterial taxa showed that there was no significant difference in the bacterial communities based on initial mortality event biomass size, but we did see a change in the bacterial communities over time, and slight differences between the skin and ocular cavity communities. Even without soil input, necrobiome communities can change rapidly. Further characterization of the bacterial necrobiome included utilization of the Random Forest algorithm to identify the most important predictors for time of decomposition. Sample sets were also scanned for notable human and swine-associated pathogens. Conclusions The applications from this study are many, ranging from establishing the environmental impacts of mass mortality events to understanding the importance of scavenger, and scavenger microbial community input on decomposition.
Black soldier fly larvae are mass produced globally for use as livestock, poultry, and aquaculture feed. Efforts are continuously seeking processes optimising larval rate of growth, size, and waste conversion as a means to lower cost and increase output. Manipulating microbes in the larval substrate (i.e. fermentation or supplementation) has been demonstrated as a potential solution. However, identifying appropriate microbes for use in this process has been limited. The objective of this study was to determine whether supplementing black soldier fly larvae with the oleaginous microbe Rhodococcus rhodochrous would result in accelerated larval development, increased final larval body size, and increased conversion efficiency. Larvae fed a sterile, or non-sterile, diet treated with R. rhodochrous grew 3× faster than the control by the third day and were approximately 2× larger than the control by the conclusion of the experiment. Conversion rate was 2× greater for the treatments indicating less feed would be needed to achieve maximum weight gain. Protein composition of resulting larvae fed diet supplemented with R. rhodochrous, was significantly different than the control not receiving the microbial infusion. Larvae provided the microbe had 4.20 and 2.79% greater fatty acid composition and short-chained fatty acids, respectively, but lower monounsaturated fatty acids (1.60%) and polyunsaturated fatty acids (2.4%). Furthermore, larvae provided R. rhodochrous produced significantly more proteins related to energy production and storage, as well as muscle development and contraction, while those sans microbe, produced proteins related to stress responses (e.g. heat shock proteins). While, this study yielded positive results for the inclusion of R. rhodochrous as part of the black soldier fly larval diet, additional research is needed to optimise the dose at an industrial scale.
The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts have also been upscaled, which is highly conducive to pathogen transmission. Viral epidemics have stifled mass-rearing efforts of other insects of economic importance, such as crickets, silkworms, and honeybees, but little is known about the viruses that associate with BSF. Although BSFs are thought to be unusually resistant to pathogens because of their expansive antimicrobial gene repertoire, surveillance techniques could be useful in identifying emerging pathogens and common BSF microbes. In this study, we used high-throughput sequencing data to survey BSF larvae and frass samples, and we identified two novel bunyavirus-like sequences. Our phylogenetic analysis grouped one in the family Nairoviridae and the other with two unclassified bunyaviruses. We describe these putative novel viruses as BSF Nairovirus-like 1 and BSF uncharacterized bunyavirus-like 1. We identified candidate segments for the full BSF Nairovirus-like 1 genome using a technique based on transcript co-occurrence and only a partial genome for BSF uncharacterized bunyavirus-like 1. These results emphasize the value of routine BSF colony surveillance and add to the number of viruses associated with BSF.
The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts are also upscaled, which is highly conducive to pathogen transmission. Viral epidemics have stifled mass-rearing efforts of other insects of economic importance, such as crickets, silkworms, and honeybees, but little is known about the viruses that associate with BSF. Although it is thought that BSF are unusually resistant to pathogens because of their expansive antimicrobial gene repertoire, surveillance techniques could be useful to identify emerging pathogens and common BSF microbes. In this study, we used high-throughput sequencing data to survey BSF larvae and frass samples, and we identified two novel bunyavirus-like sequences. Our phylogenetic analyses grouped one in the family Nairoviridae, and the other with two unclassified bunyaviruses. We describe these putative novel viruses as BSF Nairovirus-like 1 and BSF uncharacterized bunyavirus-like 1. We identified candidate segments for the full BSF Nairovirus-like 1 genome using a technique based on transcript co-occurrence, and only a partial genome for BSF uncharacterized bunyavirus-like 1. These results emphasize the value of routine BSF colony surveillance and add to the number of viruses associated with BSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.