Outdoor and nature-based recreation provides countless social benefits, yet public land managers often lack information on the spatial and temporal extent of recreation activities. Social media is a promising source of data to fill information gaps because the amount of recreational use is positively correlated with social media activity. However, despite the implication that these correlations could be employed to accurately estimate visitation, there are no known transferable models parameterized for use with multiple social media data sources. This study tackles these issues by examining the relative value of multiple sources of social media in models that estimate visitation at unmonitored sites and times across multiple destinations. Using a novel dataset of over 30,000 social media posts and 286,000 observed visits from two regions in the United States, we compare multiple competing statistical models for estimating visitation. We find social media data substantially improve visitor estimates at unmonitored sites, even when a model is parameterized with data from another region. Visitation estimates are further improved when models are parameterized with on-site counts. These findings indicate that while social media do not fully substitute for on-site data, they are a powerful component of recreation research and visitor management.
We present a long-term and high-resolution phenological dataset from 17 wildflower species collected in Mt. Rainier National Park, as part of the MeadoWatch (MW) community science project. Since 2013, 457 unique volunteers and scientists have gathered data on the timing of four key reproductive phenophases (budding, flowering, fruiting, and seeding) in 28 plots over two elevational gradients alongside popular park trails. Trained volunteers (87.2%) and University of Washington scientists (12.8%) collected data 3–9 times/week during the growing season, using a standardized method. Taxonomic assessments were highly consistent between scientists and volunteers, with high accuracy and specificity across phenophases and species. Sensitivity, on the other hand, was lower than accuracy and specificity, suggesting that a few species might be challenging to reliably identify in community-science projects. Up to date, the MW database includes 42,000+ individual phenological observations from 17 species, between 2013 and 2019. However, MW is a living dataset that will be updated through continued contributions by volunteers, and made available for its use by the wider ecological community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.