The increasing use of nanomaterials in consumer products highlights the importance of understanding their potential toxic effects. We evaluated cytotoxic and genotoxic/oxidative effects induced by commercial multi-walled carbon nanotubes (MWCNTs) on human lung epithelial (A549) cells treated with 5, 10, 40 and 100 µg ml⁻¹ for different exposure times. Scanning electron microscopy (SEM) analysis, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays were performed to evaluate cytotoxicity. Fpg-modified comet assay was used to evaluate direct-oxidative DNA damage. LDH leakage was detected after 2, 4 and 24 h of exposure and viability reduction was revealed after 24 h. SEM analysis, performed after 4 and 24 h exposure, showed cell surface changes such as lower microvilli density, microvilli structure modifications and the presence of holes in plasma membrane. We found an induction of direct DNA damage after each exposure time and at all concentrations, statistically significant at 10 and 40 µg ml⁻¹ after 2 h, at 5, 10, 100 µg ml⁻¹ after 4 h and at 10 µg ml⁻¹ after 24 h exposure. However, oxidative DNA damage was not found. The results showed an induction of early cytotoxic effects such as loss of membrane integrity, surface morphological changes and MWCNT agglomerate entrance at all concentrations. We also demonstrated the ability of MWCNTs to induce early genotoxicity. This study emphasizes the suitability of our approach to evaluating simultaneously the early response of the cell membrane and DNA to different MWCNT concentrations and exposure times in cells of target organ. The findings contribute to elucidation of the mechanism by which MWCNTs cause toxic effects in an in vitro experimental model.
Assessment of exposure to airborne endotoxins has been studied for several years, especially in occupational environments, but a large number of procedures are used for sampling and analysis. This lack of standardization makes it very difficult to compare results and set internationally accepted threshold limit values (TLVs) or occupational exposure limits (OELs) for endotoxin exposure. This paper reviews the methods reported, using advanced bibliographical search techniques: 82 papers published from 2004 to the present were selected to analyze methods for the assessment of human exposure to airborne endotoxins, with particular reference to occupational settings, and to examine their performance and critical points. Only few studies have focused on the standardization of sampling and analysis methods. The European Committee for Standardization Guidelines coincide with the procedures most frequently applied, but this does not guarantee the best results in terms of recovery and reproducibility. The factor that mainly affects endotoxin measurements is the extraction method, the main concern being the presence in the samples of a fraction insoluble in aqueous media. If substantial differences in the proportions of this fraction in different environments are confirmed in the future, the contribution of insoluble endotoxins cannot be neglected.
The efficiency of electronic noses in detecting and identifying microorganisms has been proven by several studies. Since volatile compounds change with the growth of colonies, the identification of strains is highly dependent on the growing conditions. In this paper, the effects of growth were investigated with different species of Aspergillus, which is one of the most studied microorganisms because of its implications in environmental and food safety. For this purpose, we used an electronic nose previously utilized for volatilome detection applications and based on eight porphyrins-functionalized quartz microbalances. The volatile organic compounds (VOCs) released by cultured fungi were measured at 3, 5, and 10 days after the incubation. The signals from the sensors showed that the pattern of VOCs evolve with time. In particular, the separation between the three studied strains progressively decreases with time. The three strains could still be identified despite the influence of culture time. Linear Discriminant Analysis (LDA) showed an overall accuracy of 88% and 71% in the training and test sets, respectively. These results indicate that the presence of microorganisms is detectable with respect to background, however, the difference between the strains changes with the incubation time.
A causal pathway between quartz, silicosis and lung cancer has been postulated. The aim of our study was to assess cytotoxic effects induced in a human lung epithelial cell line (A549) by exposure to alpha-quartz. Cells were exposed to respirable alpha-quartz (SRM1878a, NIST) at 25, 50 or 100 microg ml(-1 )for 24 h and at 50 or 100 microg ml(-1) for 48 h. Cytotoxic effects were analyzed by scanning electron microscopy (SEM), apoptotic morphology analysis with Hoechst staining and lactate dehydrogenase (LDH) release assay. In cells exposed to alpha-quartz for 24 h, a concentration-dependent bleb development and in particular the localization of blebs at the cell edge at higher concentrations were observed. The blebbing phenomenon was more evident after 48 h of exposure to 50 or to 100 microg ml(-1) of alpha-quartz and large blebs were localized at the cell edge. At the same concentrations surface smoothing was also observed. Moreover the presence of holes and tears was detected at the highest concentration both at 24 and 48 h. Results of morphological analysis with Hoechst stain evidenced an increase concentration-time dependent of apoptotic cell percentage that was more marked after 48 h exposure to 100 microg ml(-1) and a prevalence of late apoptosis stage with the increase of exposure time and concentration. Cells exposed to 50 or 100 microg ml(-1) of alpha-quartz for 24 and 48 h produced a significant increase in LDH release. The concentration-time-dependent bleb induction evidenced by SEM correlates with the increase of apoptotic cells and LDH activity release, demonstrating the onset of cytotoxic effects in human lung cells exposed to alpha-quartz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.