The regulation of mRNA translation is a major checkpoint in the flux of information from the transcriptome to the proteome. Critical for translational control are the trans-acting factors, RNA-binding proteins (RBPs) and small RNAs that bind to the mRNA and modify its translatability. This review summarizes the mechanisms by which RBPs regulate mRNA translation, with special focus on those binding to the 3′-untranslated region. It also discusses how recent high-throughput technologies are revealing exquisite layers of complexity and are helping to untangle translational regulation at a genome-wide scale.
Translational repression of msl-2 mRNA in females of Drosophila melanogaster is an essential step in the regulation of X-chromosome dosage compensation. Repression is orchestrated by Sex-lethal (SXL), which binds to both untranslated regions (UTRs) of msl-2 and inhibits translation initiation by poorly understood mechanisms. Here we identify Hrp48 as a SXL co-factor. Hrp48 binds to the 3′ UTR of msl-2 and is required for optimal repression by SXL. Hrp48 interacts with eIF3d, a subunit of the eIF3 translation initiation complex. Reporter and RNA chromatography assays showed that eIF3d binds to msl-2 5′ UTR, and is required for efficient translation and translational repression of msl-2 mRNA. In line with these results, eIF3d depletion -but not depletion of other eIF3 subunits- de-represses msl-2 expression in female flies. These data are consistent with a model where Hrp48 inhibits msl-2 translation by targeting eIF3d. Our results uncover an important step in the mechanism of msl-2 translation regulation, and illustrate how general translation initiation factors can be co-opted by RNA binding proteins to achieve mRNA-specific control.
Small RNAs such as microRNAs (miRNAs) and small-interfering RNAs (siRNAs) associate with members of the RNA-binding Argonaute family proteins. Together they participate in transcriptional and posttranscriptional gene silencing mechanisms. The fate of the target mRNA is determined, in part, by the degree of complementarity with the small RNA. To examine the exact role of the Argonaute protein in the silencing complex, human Argonautes were artificially recruited to reporter mRNAs in a small RNA-independent manner by the BoxB-N-peptide tethering system. Tethering of Argonaute proteins to a reporter mRNA leads to the inhibition of translation, mimicking the repression seen with miRNAs. Similar tethering experiments were performed with fly and fission yeast Argonaute proteins and other components of the small RNP (ribonucleoprotein) complex, uncovering their specific roles in the silencing complexes containing them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.