In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.
Abstract. In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term, accounting for the herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore the environment under limited visibility. We consider both metrical and topological interactions. Moreover, a few special agents, the leaders, not recognized as such by the crowd, are "hidden" in the crowd with a special controlled dynamics. Next, relying on a Boltzmann approach, we derive a mesoscopic model for a continuum density of followers, coupled with a microscopic description for the leaders' dynamics. Finally, optimal control of the crowd is studied. It is assumed that leaders aim at steering the crowd towards the exits so to ease the evacuation and limit clogging effects, and locally-optimal behavior of leaders is computed. Numerical simulations show the efficiency of the control techniques in both microscopic and mesoscopic settings. We also perform a real experiment with people to study the feasibility of such a bottom-up control technique.
In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness (i.e., rationality) of the individuals. By means of these models we describe both the natural behavior of pedestrians, i.e., their expected behavior according to their real limited predictive ability, and a target behavior, i.e., a particularly efficient behavior one would like them to assume (for, e.g., logistic or safety reasons). Then we tackle a challenging shape optimization problem, which consists in controlling the environment in such a way that the natural behavior is as close as possible to the target one, thereby inducing pedestrians to behave more rationally than what they would naturally do. We present numerical tests which elucidate the role of rational/predictive abilities and show some promising results about the shape optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.