We describe our experiences deploying BikeNet, an extensible mobile sensing system for cyclist experience mapping leveraging opportunistic sensor networking principles and techniques. BikeNet represents a multifaceted sensing system and explores personal, bicycle, and environmental sensing using dynamically role-assigned bike area networking based on customized Moteiv Tmote Invent motes and sensor-enabled Nokia N80 mobile phones. We investigate real-time and delay-tolerant uploading of data via a number of sensor access points (SAPs) to a networked repository. Among bicycles that rendezvous en route we explore inter-bicycle networking via data muling. The repository provides a cyclist with data archival, retrieval, and visualization services. BikeNet promotes the social networking of the cycling community through the provision of a web portal that facilitates back end sharing of real-time and archived cycling-related data from the repository. We present: a description and prototype implementation of the system architecture, an evaluation of sensing and inference that quantifies cyclist performance and the cyclist environment; a report on networking performance in an environment characterized by bicycle mobility and human unpredictability; and a description of BikeNet system user interfaces. Visit [4] to see how the BikeNet system visualizes a user's rides.
The vast majority of advances in sensor network research over the last five years have focused on the development of a series of small-scale (100s of nodes) testbeds and specialized applications (e.g., environmental monitoring, etc.) that are built on low-powered sensor devices that self-organize to form application-specific multihop wireless networks. We believe that sensor networks have reached an important crossroads in their development. The question we address in this paper is how to propel sensor networks from their smallscale application-specific network origins, into the commercial mainstream of people's every day lives; the challenge being: how do we develop large-scale general-purpose sensor networks for the general public (e.g., consumers) capable of supporting a wide variety of applications in urban settings (e.g., enterprises, hospitals, recreational areas, towns, cities, and the metropolis). We propose MetroSense, a new people-centric paradigm for urban sensing at the edge of the Internet, at very large scale. We discuss a number of challenges, interactions and characteristics in urban sensing applications, and then present the MetroSense architecture which is based fundamentally on three design principles: network symbiosis, asymmetric design, and localized interaction. The ability of MetroSense to scale to very large areas is based on the use of an opportunistic sensor networking approach. Opportunistic sensor networking leverages mobility-enabled interactions and provides coordination between people-centric mobile sensors, static sensors and edge wireless access nodes in support of opportunistic sensing, opportunistic tasking, and opportunistic data collection. We discuss architectural challenges including providing sensing coverage with sparse mobile sensors, how to hand off roles and responsibilities between sensors, improving network performance and connectivity using adaptive multihop, and importantly, providing security and privacy for people-centric sensors and data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.