Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a “gold standard”, the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.
Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction.
In an experimental model of menopause, N3-PUFA supplementation prevents arterial stiffening and other vascular changes induced by ovariectomy. These results represent a therapeutic benefit of N3-PUFAs in prevention of postmenopausal cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.