Specific memory B cells and antibodies are a reliable read-out of vaccine efficacy. We analysed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase, thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that the first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies, thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterilizing immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA.
Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3–4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen.
The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.
Screening cDNA libraries from solid human tumors with sera of autologous patients (SEREX) has proven to be a powerful approach to identifying tumor antigens recognized by the humoral arm of the immune system. In many cases, application of this methodology has led to the discovery of novel tumor antigens as unknown gene products. We tried to improve the potency of the SEREX approach by combining it with phage-display technology. We designed a new lambda vector to express protein fragments as N-terminal fusions to the D capsid protein and generated high-complexity cDNA libraries from human breast carcinoma cell lines and solid tumors. Screening these phage-displayed libraries required limited amounts of sera from patients and efficiently identified several tumor antigens specifically reacting with sera from breast cancer patients. © 2003 Wiley-Liss, Inc. Key words: breast cancer; immune response; phage displayTumor-associated antigens recognized by humoral effectors of the immune system are an attractive target for diagnostic and therapeutic approaches to human cancer. A considerable number of this type of antigen have been identified over recent years through screening expression cDNA libraries from human solid tumors with sera of the autologous patients (SEREX, serologic identification of antigens by recombinant expression cloning). [1][2][3][4] This type of screening of a cDNA expression library by conventional methods requires the preparation of a large number of membrane filters blotted with bacteriophage plaques that are then searched with a specific probe. In the case of the SEREX experiments, the screening is performed using sera from cancer patients, which are usually available in very limited quantity. The second limitation is that such immunoscreening procedure does not allow selection of antigens that are recognized by sera from different patients.We tried to overcome these limitations and to simplify the screening procedure by performing affinity selection of cDNA libraries in very small volumes by combining the SEREX approach with that of phage-display technology. Phage-display technology is based on the insertion of foreign nucleotide sequences into genes encoding for various coat proteins of filamentous phage, resulting in a heterogeneous mixture of phages, each displaying the different peptide sequence encoded by a corresponding insert. A physical link between a displayed fusion protein and DNA encoded for it make this phage target selectable.Phage-display technology was introduced in 1985 by Smith 5 and has been widely used since for generating and screening peptide libraries to identify ligands for various kinds of receptor molecules. 6 -8 However, significantly less striking progress has been reported on the use of filamentous phage as display vector for constructing cDNA libraries. In most cases, foreign peptides are displayed on the filamentous phage capsid as N-terminal fusions to the major (pVIII) or the minor (pIII) coat protein. Large protein domains fused to pVIII disturb (with some rare...
Heparanase is the sole mammalian enzyme capable of cleaving glycosaminoglycan heparan sulfate side chains of heparan sulfate proteoglycans. Its altered activity is intimately associated with tumor growth, angiogenesis, and metastasis. Thus, its implication in cancer progression makes it an attractive target in anticancer therapy. Herein, we describe the design, synthesis, and biological evaluation of new benzazoles as heparanase inhibitors. Most of the designed derivatives were active at micromolar or submicromolar concentration, and the most promising compounds are fluorinated and/or amino acids derivatives 13a, 14d, and 15 that showed IC 0.16-0.82 μM. Molecular docking studies were performed to rationalize their interaction with the enzyme catalytic site. Importantly, invasion assay confirmed the antimetastatic potential of compounds 14d and 15. Consistently with its ability to inhibit heparanase, compound 15 proved to decrease expression of genes encoding for proangiogenic factors such as MMP-9, VEGF, and FGFs in tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.