Extensive calculations on a large set of free radicals containing atoms of the second and third row show that the B3LYP/N07D computational model provides remarkably accurate structural parameters and magnetic tensors at reasonable computational costs. The key of this success is the optimization of core-valence s functions for hyperfine coupling constants, while retaining (and even improving) the good performances of the parent 6-31+G(d,p) basis set for valence properties through reoptimization of polarization and diffuse p functions.
In this work we carefully investigate the relationship between computed data and experimental electronic spectra. To that end, we compare both vertical transition energies, EV, and characteristic frequencies of the spectrum like the maximum, ν(max), and the center of gravity, M(1), taking advantage of an analytical expression of M(1) in terms of the parameters of the initial- and final-state potential energy surfaces. After pointing out that, for an accurate comparison, experimental spectra should be preliminarily mapped from wavelength to frequency domain and transformed to normalized lineshapes, we simulate the absorption and emission spectra of several prototypical chromophores, obtaining lineshapes in very good agreement with experimental data. Our results indicate that the customary comparison of experimental ν(max) and computational EV, without taking into account vibrational effects, is not an adequate measure of the performance of an electronic method. In fact, it introduces systematic errors that, in the investigated systems, are on the order of 0.1-0.3 eV, i.e., values comparable to the expected accuracy of the most accurate computational methods. On the contrary, a comparison of experimental and computed M(1) and/or 0-0 transition frequencies provides more robust results. Some rules of thumbs are proposed to help rationalize which kind of correction one should expect when comparing EV, M(1), and ν(max).
The popular AMBER force-field has been extended to provide an accurate description of large and flexible nitroxide free-radicals in condensed phases. New atom types have been included, and relevant parameters have been fitted based on geometries, vibrational frequencies and potential energy surfaces computed at the DFT level for several different classes of nitroxides, both in vacuo and in different solvents. The resulting computational tool is capable of providing reliable structures, vibrational frequencies, relative energies and spectroscopic observables for large and flexible nitroxide systems, including those typically used as spin labels. The modified force field has been employed in the context of an integrated approach, based on classical molecular dynamics and discrete-continuum solvent models, for the investigation of environmental and short-time dynamic effects on the hyperfine and gyromagnetic tensors of PROXYL, TEMPO and INDCO spin probes. The computed magnetic parameters are in very good agreement with the available experimental values, and the procedure allows for an unbiased evaluation of the role of different effects in tuning the overall EPR observables.
The absorption and emission spectra of dithiophene have been computed in different environments (gas phase, apolar, and polar solvents) and at different temperatures, including Duschinsky, temperature and solvent effects at full ab initio level, and considering the anharmonicity of the double well potential associated with the inter-ring torsional mode. The computed spectra are in very good agreement with the experimental ones, allowing for a complete assignment of the main vibrational features. Five different density functionals (BLYP, B3LYP, CAM-B3LYP, BHLYP, and PBE0) have been tested, and CAM-B3LYP and PBE0 are the most accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.