Engineering design‐based STEM integration is one potential model to help students integrate content and practices from all of the STEM disciplines. In this study, we explored the intersection of two aspects of pre‐college STEM education: the integration of the STEM disciplines, and the NGSS practice of engaging in argument from evidence within engineering. Specifically, our research question was: While generating and justifying solutions to engineering design problems in engineering design‐based STEM integration units, what STEM content do elementary and middle school students discuss? We used naturalistic inquiry to analyze student team audio recordings from seven curricular units in order to identify the variety of STEM content present as students justified their design ideas and decisions (i.e., used evidence‐based reasoning). Within the four disciplines, fifteen STEM content categories emerged. Particularly interesting were the science and mathematics categories. All seven student teams used unit‐based science, and five used unit‐based mathematics, to support their design ideas. Five teams also applied science and/or mathematics content that was outside the scope of the units' learning objectives. Our results demonstrate that students integrated content from all four STEM disciplines when justifying engineering design ideas and solutions, thus supporting engineering design‐based STEM integration as a curricular model.
One of the fundamental practices identified in Next Generation Science Standards (NGSS) is argumentation, which has been researched in P-12 science education for the previous two decades but has yet to be studied within the context of P-12 engineering education. This research explores how elementary and middle school science teachers incorporated argumentation into engineering design-based STEM (science, technology, engineering, and mathematics) integration curricular units they developed during a professional development program. To gain a better understanding of how teachers included argumentation in their curricula, a multiple case study approach was conducted using four STEM integration units. While evidence of argumentation was found in each curriculum, the degree to which it appeared in each case varied. The strongest potential for argumentation occurred when students were required to explain and justify their final engineering design solutions to the client; certain guiding questions and discussions also promoted argumentation, depending on their structure. Additionally, argumentation was found to support engineering concepts such as the process of design, engineering thinking, communication in engineering contexts, and the application of science, mathematics, and engineering content. These findings support the idea that argumentation can be integrated into P-12 engineering education contexts in order to support students' STEM learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.