Background: Although chemotherapy-induced leukoencephalopathy has been described in case and cohort studies, literature remains inconclusive about its prevalence and mechanisms. Therefore, we investigated the presence of leukoencephalopathy after multiagent chemotherapy in women treated for breast cancer and potential underlying neuroinflammatory processes. Methods: In this exploratory study, 15 chemotherapy-treated and 15 age-matched chemotherapy-naïve patients with early-stage breast cancer, as well as 15 healthy controls underwent simultaneous PET-MR neuroimaging, including T1-weighted MPRAGE, T2-weighted FLAIR and dynamic PET with the 18-kDA translocator protein (TSPO) radioligand [ 18 F]DPA-714. Total and regional (juxtacortical, periventricular, deep white matter and infratentorial) lesion burden were compared between the groups with one-way ANOVA. With paired t-tests, [ 18 F] DPA-714 volume of distribution [V T , including partial volume correction (PVC)] in lesioned and normal appearing white matter (NAWM) were compared within subjects, to investigate inflammation. Finally, two general linear models were used to examine the predictive values of neurofilament light-chain (NfL) serum levels on (1) total lesion burden or (2) PVC [ 18 F]DPA-714 V T of lesions showing elevated inflammation. Results: No significant differences were found in total or localized lesion burden. However, significantly higher (20-45%) TSPO uptake was observed in juxtacortical lesions (p ≤ 0.008, t ≥ 3.90) compared to NAWM in both cancer groups, but only persisted for chemotherapy-treated patients after PVC (p = 0.005, t = 4.30). NfL serum levels were not associated with total lesion volume or tracer uptake in juxtacortical lesions. Conclusion: This multimodal neuroimaging study suggests that neuroinflammatory processes could be involved in the development of juxtacortical, but not periventricular or deep white matter, leukoencephalopathy shortly after chemotherapy for early-stage breast cancer.
Rats emit ultrasonic vocalizations (USV). During aversive situations, rats emit 22-kHz USV, which are considered "alarm calls" and supposed to reflect a negative affective state of the sender. During appetitive situations, rats emit 50-kHz USV, which are believed to reflect a positive affective state. Here, we recorded USV emission in adult male rats during the acoustic startle response test. Our results indicate varied USV emission in both the 22- and 50-kHz USV ranges. Enhanced startle responses were observed in rats with a predominant 22-kHz call profile, supporting the notion that 22-kHz USV emission is associated with a negative affective state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.