The present investigation provides the first indication that constitutive, calcium-independent phospholipase A2 activity (iPLA2) modulates phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of glutamate receptors. Preincubation of frozen-thawed brain sections with two iPLA2 inhibitors, bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACO), produced a dose-dependent enhancement in phosphorylation at both Ser831 and Ser845 sites on the GluR1 subunit of AMPA receptors. This effect was not associated with changes in phosphorylation at the Ser sites of either the GluR2/3 subunits of AMPA receptors or the NR1 subunits of N-methyl-D-aspartate (NMDA) receptors, nor was it reproduced by inhibition of the calcium-dependent form of PLA2 activity. These results suggest that the effects of these inhibitors are selective to GluR1 subunits and that they are dependent on iPLA2 activity. The ability of iPLA2 inhibitors to increase GluR1 phosphorylation was mimicked by the 5-lipoxygenase (5-LO) inhibitor MK-886, but not by blockers of 12-lipoxygenase (12-LO) or cyclooxygenase. Additional experiments indicated that calcium-mediated truncation of GluR1 subunits was reduced by iPLA2 inhibitors, an effect that was not correlated with overall changes in the distribution of AMPA receptors between intracellular and membrane compartments prepared from whole brain sections. However, quantitative autoradiographic analysis indicated enhanced 3H-AMPA binding to the CA1 stratum radiatum of the hippocampus in BEL-treated sections. Saturation kinetics experiments demonstrated that this binding augmentation was due to an increase in the maximal number of AMPA binding sites. Altogether, our results point to the conclusion that basal iPLA2 activity, through the generation of 5-LO metabolites, regulates AMPA receptor phosphorylation of GluR1 subunits, an effect that might selectively influence the number of membrane receptors in area CA1 of the hippocampus.
We have recently documented that phosphorylation of the GluR1 subunit of alpha-amino-3-hydroxy-5-methylisoxazole-propionate (AMPA) glutamate receptors is influenced by calcium-independent forms of phospholipase A(2) (iPLA(2)) activity in the brain. Given the importance of GluR1 subunit phosphorylation in the control of AMPA receptor delivery to synaptic membranes, we tested the influence of iPLA(2) activity on AMPA receptor distribution between neuronal compartments, using organotypic cultured hippocampal slices. In agreement with earlier reports, the iPLA(2) inhibitor bromoenol lactone (BEL) markedly enhanced the phosphorylation of the GluR1 subunit at both Ser831 and Ser845 residues. GluR1 subunit phosphorylation levels were selectively increased by (R)-BEL, an enantio-selective inhibitor of iPLA(2)gamma, but not by (S)-BEL, an iPLA(2)beta inhibitor. The iPLA(2)gamma inhibitor R-BEL also promoted the insertion of new GluR1 subunits into synaptic membranes and exacerbated AMPA-mediated cell death in the CA1 region of the hippocampus. The latter effect was selectively abolished by IEM 1460 and philanthotoxin-433, two antagonists specific for AMPA receptors lacking GluR2 subunits. These results provide evidence that iPLA(2)gamma-related regulation of AMPA receptor GluR1 subunit phosphorylation could represent an important mechanism modulating hippocampal cell death induced by AMPA receptor overstimulation.
This adapted protocol and these reference values for speed will improve occupational therapy handwriting assessments for the target population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.