Here, we describe the identification and synthesis of novel indole sulfonamide derivatives that activate the three peroxisome proliferator activated receptor (PPAR) isoforms. Starting with a PPARα activator, compound 4, identified during a high throughput screening (HTS) of our proprietary screening library, a systematic optimization led to the discovery of lanifibranor (IVA337) 5, a moderately potent and well balanced pan PPAR agonist with an excellent safety profile. In vitro and in vivo, compound 5 demonstrated strong activity in models that are relevant to nonalcoholic steatohepatitis (NASH) pathophysiology suggesting therapeutic potential for NASH patients.
The bulk of the red blood cell membrane proteins are partitioned between two multiprotein complexes, one associated with ankyrin R, the other with protein 4.1R. Here we examine the effect of phosphorylation of 4.1R on its interactions with its partners in the membrane. We show that activation of protein kinase C in the intact cell leads to phosphorylation of 4.1R at two sites, serine-312 and serine-331. This renders the 4.1R-associated transmembrane proteins GPC, Duffy, XK and Kell readily extractable by nonionic detergent with no effect on the retention of band 3 and Rh, both of which also interact with 4.1R. In solution, phosphorlyation at either serine suppresses the capacity of 4.1R to bind to the cytoplasmic domains of GPC, Duffy and XK. Phosphorylation also exerts an effect on the stability in situ of the ternary spectrin-actin-4.1R complex, which characterizes the junctions of the membrane skeletal network, as measured by the enhanced competitive entry of a β-spectrin peptide possessing both actin- and 4.1R-binding sites. Thus phosphorylation weakens the affinity of the 4.1R for β-spectrin. The two 4.1R phosphorylation sites lie in a domain flanked in the sequence by the spectrin- and actin-binding domain and a domain containing the binding sites for transmembrane proteins. It thus appears that phosphorylation of a regulatory domain in 4.1R results in structural changes transmitted to the functional interaction centers of the protein. We consider possible implications of our findings to altered membrane function of normal reticulocytes and sickle red cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.