We exhibit a three parameter infinite family of quadratic recurrence relations inspired by the well known Somos sequences. For one infinite subfamily we prove that the recurrence generates an infinite sequence of integers by showing that the same sequence is generated by a linear recurrence (with suitable initial conditions). We also give conjectured relations among the three parameters so that the quadratic recurrences generate sequences of integers.
This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pKa predictions. Structure-based pKa calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for pKa prediction, ranging from empirical statistical models to ab initio quantum mechanical approaches. However, each of these methods are based on a set of conceptual assumptions that can effect a model’s accuracy and generalizability for pKa prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the García-Moreno lab. Our cross-validation study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods with improvements ranging from 45-73% over other method classes. This study also compares BMA’s predictive performance to other ensemble-based techniques and demonstrates that BMA can outperform these approaches with improvements ranging from 27-60%. This work illustrates a new possible mechanism for improving the accuracy of pKa prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.
Networks-of-networks (NoN) is a graph-theoretic model of interdependent networks that have distinct dynamics at each network (layer). By adding special edges to represent relationships between nodes in different layers, NoN provides a unified mechanism to study interdependent systems intertwined in a complex relationship. While NoN based models have been proposed for cyber-physical systems, in this position paper we build towards a three-layered NoN model for an enterprise cyber system. Each layer captures a different facet of a cyber system. We present in-depth discussion for four major graphtheoretic applications to demonstrate how the three-layered NoN model can be leveraged for continuous system monitoring and mission assurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.