Photoacclimation involves the modification of components of the light and dark reactions to optimize photosynthesis following changes in available light. All of the energy required for photosynthesis comes from linear electron transport through PSII and PSI and is dependent upon the amount of light harvested by PSII relative to PSI (a* PSII and a* PSI ). The amount of light harvested is determined by the effective absorption cross-sections (r PSII , r PSI ) and cellular contents of the PSII and PSI reaction center complexes (RCII, RCI). Here, we examine the effective absorption cross-sections and reaction center contents for calcifying (B11) and noncalcifying (B92) strains of the globally important coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler when grown under various photon flux densities (PFDs). The two strains displayed different ''strategies'' of acclimation. As growth PFD increased, B11 preferentially changed r and the cellular content of chl a per cell over PSU ''size'' (the total cellular chl a content associated with the reaction center complexes); strain B92 preferentially changed PSU size over the cellular content of reaction complexes. Neither strategy was specifically consistent with the majority of previous studies from other microalgal species. For both strains, cellular light absorption for PSII and PSI was maintained close to unity across the range of growth PFDs since changes of r PSII and r PSI were reciprocated by those of RCIIs and RCIs per cell. Our results demonstrate a significant adaptive flexibility of E. huxleyi to photoacclimate. Finally, we calculated the amount of chl a associated with either photosystem to consider our interpretations of photoacclimation based on conventional determinations of PSU size.
This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6–14.5 g L-1 eq. CO32-, i.e. 160–220 mM compare to around 2–2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was found responsible for almost all photosynthetic primary production.
The responses of the plankton food web to increases in temperature and ultraviolet B radiation (UVBR, were experimentally investigated at a coastal Mediterranean site during spring. Eight moored mesocosms were used to compare natural plankton food web responses (control mesocosms) with three treatments simulating expected future local temperature and UVBR increases, as follows: (1) 3uC increase in water temperature, (2) 20% increase in incident UVBR, and (3) simultaneous 3uC increase in water temperature and 20% increase in incident UVBR. The plankton food web was resistant to elevated UVBR, having only moderate effects on plankton abundances and structure. In contrast, warming induced significant shifts in the plankton food web structure and function. Specifically, the abundance of protozooplankton (ciliates and flagellates) increased and the development time of copepods from nauplii to adults decreased. In the warm mesocosms, the emergence of copepod adult stages midway through the experiment resulted in a decrease in ciliates and consequently in an increase in heterotrophic flagellates. One unexpected result was that warming reduced the abundance of heterotrophic bacteria midway through the experiment. These results indicate a trophic-cascade effect under warming. The increase in adult copepods diminishes ciliates and in turn favors heterotrophic flagellates that consume bacteria. Warming also induced an increase in net oxygen production, indicating an increase in net primary production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.