Background In our previous study in Luanda, Angola, initial continuous β-lactam infusion for 24 hours combined with oral acetaminophen for 48 hours showed promising results as a new treatment for childhood bacterial meningitis. We investigated whether extending this treatment regimen to 4 days would improve the outcomes further. Methods We conducted a randomized, double-blind, parallel-group study at the same hospital in Luanda. Children aged 2 months to 15 years presenting to hospital with symptoms and signs of bacterial meningitis were randomized to receive, for the first 4 days, a continuous infusion of cefotaxime (250 mg/kg/day) with simultaneous oral acetaminophen (first dose 30 mg/kg, then 20 mg/kg every 6 hours), or cefotaxime conventionally as boluses (62.5 mg/kg, 4 times per day) with placebo orally. All children received also glycerol orally. The primary outcome was mortality by day 7. Results In all, 375 patients were included in the study between 22 January 2012 and 21 January 2017. As 2 children succumbed before treatment initiation, 187 vs 186 participants remained in the intervention and control groups, respectively. On day 7, 61 of 187 (32.6%) children in the intervention group vs 64 of 186 (34.4%) in the control group had died (risk ratio, 0.95 [95% confidence interval {CI}, .71–1.26]; absolute risk difference, 1.8% [95% CI, −7.8 to 11.4]). At discharge from hospital, the corresponding numbers were 71 of 187 (38.0%) and 75 of 186 (40.3%), respectively. Conclusions Prolonged continuous β-lactam infusion combined with oral acetaminophen did not improve the gloomy outcomes of childhood bacterial meningitis in Angola. Clinical Trials Registration NCT01540838.
The immunological response in bacterial meningitis (BM) causes the formation of reactive oxygen and nitrogen species (ROS, RNS) and activates myeloperoxidase (MPO), an inflammatory enzyme. Thus, structural oxidative and nitrosative damage to proteins and DNA occurs. We aimed to asses these events in the cerebrospinal fluid (CSF) of pediatric BM patients. Phenylalanine (Phe), para-tyrosine (p-Tyr), nucleoside 2′-deoxiguanosine (2dG), and biomarkers of ROS/RNS-induced protein and DNA oxidation: ortho-tyrosine (o-Tyr), 3-chlorotyrosine (3Cl-Tyr), 3-nitrotyrosine (3NO₂-Tyr) and 8-oxo-2′-deoxyguanosine (8OHdG), concentrations were measured by liquid chromatography coupled to tandem mass spectrometry in the initial CSF of 79 children with BM and 10 without BM. All biomarkers, normalized with their corresponding precursors, showed higher median concentrations (p < 0.0001) in BM compared with controls, except 8OHdG/2dG. The ratios o-Tyr/Phe, 3Cl-Tyr/p-Tyr and 3NO₂-Tyr/p-Tyr were 570, 20 and 4.5 times as high, respectively. A significantly higher 3Cl-Tyr/p-Tyr ratio was found in BM caused by Streptococcus pneumoniae, than by Haemophilus influenzae type b, or Neisseria meningitidis (p = 0.002 for both). In conclusion, biomarkers indicating oxidative damage to proteins distinguished BM patients from non-BM, most clearly the o-Tyr/Phe ratio. The high 3Cl-Tyr/p-Tyr ratio in pneumococcal meningitis suggests robust inflammation because 3Cl-Tyr is a marker of MPO activation and, indirectly, of inflammation.
Bacterial meningitis (BM) is a severe disease caused by various bacterial pathogens. Toll-like receptors (TLRs) protect humans from invading pathogens. In this study, we determined whether single nucleotide polymorphisms (SNPs) of TLR4 and TLR9 are associated with susceptibility to and outcome of BM in Angolan children. Samples were taken from 241 patients and 265 age-matched ethnic controls. The SNPs TLR4 rs4986790 (896A > G) and TLR9 rs187084 (−1486T > C) were determined by high-resolution melting analysis (HRMA). The frequency of variant genotypes in TLR4 was significantly higher in patients with Haemophilus influenzae meningitis than controls (odds ratio (OR), 2.5; 95% confidence interval (CI), 1.2–5.4; p = 0.021), whereas the frequency of variant genotypes in TLR9 was significantly lower in patients with H. influenzae meningitis than controls (OR, 0.4; 95% CI, 0.2–0.9; p = 0.036). No such differences were found with other causative pathogens, such as Streptococcus pneumoniae and Neisseria meningitidis. At the time of discharge, patients with meningitis caused by Gram-negative bacteria who were carriers of variant TLR4 genotypes had a higher risk of ataxia (OR, 12.91; 95% CI, 1.52–109.80; p = 0.019) and other neurological sequelae (OR, 11.85; 95% CI, 1.07–131.49; p = 0.044) than those with the wild-type TLR4 genotype. Our study suggests an association between H. influenzae meningitis and genetic variation between TLR4 and TLR9 in Angolan children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.