Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.
Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the 10 17 to 10 19 cm −3 range, by infrared spectroscopy, first principle calculations, pump-probe spectroscopy and dc transport measurements to determine the relation between plasma edge and carrier density and to quantify mid-infrared plasmon losses. We demonstrate that the unscreened plasma frequency can be tuned in the 400 -4800 cm −1 range and that the average electron scattering rate, dominated by scattering with optical phonons and charged impurities, increases almost linearly with frequency. We also found weak dependence of losses and tunability on the crystal defect density, on the inactivated dopant density and on the temperature down to 10 K. In films where the plasma was optically activated by pumping in the near-infrared, we found weak but significant dependence of relaxation times on the static doping level of the film. Our results suggest that plasmon decay times in the several-picosecond range can be obtained in ntype germanium thin films grown on silicon substrates hence allowing for underdamped mid-infrared plasma oscillations at room temperature.The recent push towards applications of spectroscopy for chemical and biological sensing in the mid-infrared (mid-IR)1-8 has prompted the need for conducting thin films displaying values of the complex dielectric functionǫ(ω) = ǫ ′ (ω) + iǫ ′′ (ω) that can be tailored to meet the needs of novel electromagnetic designs exploiting the concepts of metamaterials, transformation optics and plasmonics 9 . In the design of metamaterials, where subwavelength sized conducting elements are embedded in dielectric matrices, if the values of ǫ ′ of the metal and the dielectric are of the same order, but have opposite sign, the geometric filling fractions of the metal and dielectric can be readily tuned to achieve subwavelengthresolution focusing of radiation 10 . Such requirement is met by silver for wavelengths λ around 400 nm. The same condition cannot be achieved in the IR range by using elemental metals, however, because metals possess an extremely high negative value of ǫ ′ not equaled, in
We present the experimental study of a free-standing metallic guided-mode resonant structure, for bandpass filtering applications in the mid-IR wavelength range. Structure consists of a subwavelength gold grating with narrow slits deposited on a silicon nitride membrane. High optical transmission is measured with up to 78% transmission at resonance. Angularly resolved spectra are presented revealing Fano-type resonance.
GeSn alloys are nowadays considered as the most promising materials to build Group IV laser sources on silicon (Si) in a full complementary metal oxide semiconductorcompatible approach. Recent GeSn laser developments rely on increasing the band structure directness, by increasing the Sn content in thick GeSn layers grown on germanium (Ge) virtual substrates (VS) on Si. These lasers nonetheless suffer from a lack 1 of defect management and from high threshold densities. In this work we examine the lasing characteristics of GeSn alloys with Sn contents ranging from 7 % to 10.5 %. The GeSn layers were patterned into suspended microdisk cavities with different diameters in the 4-8 µm range. We evidence direct band gap in GeSn with 7 % of Sn and lasing at 2-2.3 µm wavelength under optical injection with reproducible lasing thresholds around 10 kW cm −2 , lower by one order of magnitude as compared to the literature. These results were obtained after the removal of the dense array of misfit dislocations in the active region of the GeSn microdisk cavities. The results offer new perspectives for future designs of GeSn-based laser sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.