Primarily on the basis of C, N, S, and O stable isotope systematics, this article reviews recent achievements in understanding diamond formation and growth in Earth's mantle. Diamond is a metasomatic mineral that results from either the reduction or oxidation of mobile C-bearing liquids (fluids or melts) that intrude preexisting lithologies (eclogites, peridotites, and metamorphic rocks). This process seems ubiquitous, as it occurs over a large range of depths and extends through time. Diamond-forming carbon derives mainly from the convective asthenosphere. Most of its isotopic anomalies reflect fractionation processes in the lithospheric mantle, which are attributed to diamond precipitation itself and/or a mineralogical control occurring prior to diamond precipitation. Evidence for a mineralogical control would be the decoupling of the 15N/14N ratios in eclogitic diamond from other tracers of subduction in inclusions in the same diamond. C isotope anomalies related to subduction are rare and are probably best seen in diamonds from the transition zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.