Abstract. We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H] +• and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS 3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu II (2,2′:6′,2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR] +• that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing C α -radical positions in peptide cation radical intermediates.
We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone.
We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas‐phase metal complexes. Oxidation of Tyr‐Ala‐Ala‐Ala‐Arg (YAAAR) produces Tyr‐O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala‐Ala‐Ala‐Tyr‐Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N‐terminal amino group in combination with hydrogen‐atom transfer from the Cα positions of the peptide backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.