Typhoid fever, caused by Salmonella enterica serovar Typhi, is responsible for an estimated burden of approximately 17 million new episodes per year worldwide. Adequate and timely antimicrobial treatment invariably cures typhoid fever. The increasing antimicrobial resistance (AMR) of S. Typhi severely limits the treatment options. We studied whole-genome sequences (WGS) of 536 S. Typhi isolates collected in Bangladesh between 1999 and 2013 and compared those sequences with data from a recent outbreak in Pakistan and a laboratory surveillance in Nepal. The analysis suggests that multiple ancestral origins of resistance against ciprofloxacin and ceftriaxone are present in three countries. Such independent genetic events and subsequent dissemination could enhance the risk of a rapid global spread of these highly resistant clones. Given the current treatment challenges, vaccination seems to be the most appropriate short-term intervention to reduce the disease burden of typhoid fever at a time of increasing AMR.
During June 2017–April 2018, active tuberculosis with Beijing SIT1 isolates was diagnosed in 14 persons living in 4 distant cities in France. Whole-genome sequencing indicated that these patients belonged to a single transmission chain. Whole-genome sequencing–based laboratory investigations enabled prompt tracing of linked cases to improve tuberculosis control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.