Soil fertilization is necessary for high-demand crop production in agriculture and forestry. Our current dependence on chemical fertilizers has significant harmful side effects. Biofertilization using microorganisms is a sustainable way to limit the need for chemical fertilizers in various enterprises. Most plant endophytic bacteria have thus far been unstudied for their plant growth promoting potential and hence present a novel niche for new biofertilizer strains. We isolated English oak (Quercus robur) endophytic bacteria and tested them for plant growth promoting traits (PGPTs) such as nitrogen fixation, phosphate mineralization/solubilization, siderophore and indole-3-acetic acid (IAA) production. We also investigated the effect the selected isolate had on poplar (Populus spp.) microshoot vegetative growth parameters in vitro. In total 48 bacterial strains were isolated, attributed to Bacillus, Delftia, Paenibacillus, Pantoea and Pseudomonas genera. All the isolates displayed at least three PGPTs, with 39.6% of the isolates displaying all five (all were Pseudomonas spp.) and 18.75% displaying four. Based on relative abundance, Paenibacillus sp. isolate was selected for the poplar microshoot inoculation study. The isolate had a significant positive effect on poplar microshoot root growth and development. Two tested poplar genotypes both had increased lateral root number and density, fresh and dry root biomass. Furthermore, one genotype had increased length and number of adventitious roots as well as a decrease in fresh aboveground biomass. The root enhancement was attributed to IAA production. We propose this isolate for further studies as a potential biofertilizer.
Due to temperature changes, forests are expected to encounter more stress than before, both in terms of biotic factors, such as increased insect attacks, and abiotic factors, such as more frequent droughts. Priming trees to respond to these changes faster and more effectively would be beneficial. Induced systemic resistance (ISR) is a mechanism that is turned on when plants encounter unfavorable conditions. Certain elicitors, such as jasmonic acid (JA) are known to induce plants’ metabolic response. However, even though studies on ISR in herbaceous species are common and varied ISR elicitors can be used in agriculture, the same cannot be said about trees and forestry enterprises. We aimed to investigate whether JA used in different concentrations could induce metabolic changes (total phenol content, total flavonoid content, photosynthesis pigment content, antioxidant enzyme activity) in Pinus sylvestris seedlings and how this varies between different pine half-sib families (genotypes). After six weeks with a single application of JA, pine seedlings in several pine genetic families exhibited increased antioxidant enzyme activity, total phenol content and carotenoid content that correlated positively with JA concentrations used. Results from other genetic families were varied, but in many cases, there was a significant response to JA, with a noticeable increase as compared to the unaffected group. The impact on chlorophyll content and flavonoids was less noticeable overall. A positive effect on seedling growth parameters was not observed in any of the test cases. We conclude that JA can induce systemic resistance after a single application exogenously in P. sylvestris seedlings and recommend that the use of JA needs to be optimized by selecting appropriate concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.