This paper describes the development of a simple method for mixed non‐covalent and covalent bonding of partially purified inulinase on functionalized multiwall carbon nanotubes (f‐MWCNTs) with polypyrrole (PPy). The pyrrole (Py) was electrochemically polymerized on MWCNTs in order to fabricate MWCNTs/PPy nanocomposite. Two multiple forms of enzyme were bound to N‐H functional groups from PPy and ‐COO− from activated MWCNTs to yield a stable MWCNTs/PPy/PEG immobilized preparation with increased thermal stability. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to confirm functionalization of nanoparticles and immobilization of the enzyme. The immobilization yield of 85% and optimal enzyme load of 345 μg protein onto MWCNTs was obtained. The optimum reaction conditions and kinetic parameters were established using the UV‐Vis analytical assay. The best functional performance for prepared heterogeneous catalyst has been observed at pH 3.6 and 10, and at the temperatures of 60 and 80ºC. The half‐life (t1/2) of the immobilized inulinase at 60 and 80ºC was found to be 231 and 99 min, respectively. The reusability of the immobilized formulation was evaluated based on a method in which the enzyme retained 50% of its initial activity, which occurred after the eighteenth operation cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.