In this paper, we obtain the Frenet equations of a pseudo null and a partially null curves, lying fully in the semi-Euclidean space R 4 2 , and classify all such curves with constant curvatures. (2000): 53C50, 53C40.
Mathematics Subject Classification
In this paper, we introduce Bäcklund transformation of a pseudo null curve in Minkowski 3-space as a transformation mapping a pseudo null helix to another pseudo null helix congruent to the given one. We also give the sufficient conditions for a transformation between two pseudo null curves in the Minkowski 3-space such that these curves have equal constant torsions. By using the Da Rios vortex filament equation, based on localized induction approximation (LIA), we derive the vortex filament equation for a pseudo null curve and prove that the evolution equation for the torsion is the viscous Burger’s equation. As an application, we show that pseudo null curves and their Frenet frames generate solutions of the Da Rios vortex filament equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.