-Quantified balanced and restored crustal cross-sections across the NW Zagros Mountains are presented in this work integrating geological and geophysical local and global datasets. The balanced crustal cross-section reproduces the surficial folding and thrusting of the thick cover succession, including the near top of the Sarvak Formation (∼ 90 Ma) that forms the top of the restored crustal cross-section. The base of the Arabian crust in the balanced cross-section is constrained by recently published seismic receiver function results showing a deepening of the Moho from 42 ± 2 km in the undeformed foreland basin to 56 ± 2 km beneath the High Zagros. The internal parts of the deformed crustal cross-section are constrained by new seismic tomographic sections imaging a ∼ 50 • NE-dipping sharp contact between the Arabian and Iranian crusts. These surfaces bound an area of 10 800 km 2 that should be kept constant during the Zagros orogeny. The Arabian crustal cross-section is restored using six different tectonosedimentary domains according to their sedimentary facies and palaeobathymetries, and assuming Airy isostasy and area conservation. While the two southwestern domains were directly determined from well-constrained surface data, the reconstruction of the distal domains to the NE was made using the recent margin model of Wrobel-Daveau et al. (2010) and fitting the total area calculated in the balanced cross-section. The Arabian continental-oceanic boundary, at the time corresponding to the near top of the Sarvak Formation, is located 169 km to the NE of the trace of the Main Recent Fault. Shortening is estimated at ∼ 180 km for the cover rocks and ∼ 149 km for the Arabian basement, including all compressional events from Late Cretaceous to Recent time, with an average shortening rate of ∼ 2 mm yr −1 for the last 90 Ma.
This paper presents a new southern North Atlantic plate model from Late Cretaceous to present, with the aim of constraining the kinematics of the Iberian plate during the last 83.5 Myr. This model is presented along with a detailed isochron map generated through the analysis of 3 aeromagnetic tracks and ~400 ship tracks from the National Centers for Environmental Information database. We present a new technique to obtain well‐constrained estimates of the Iberia‐North America plate motions from magnetic anomalies, overcoming the scarcity of large‐offset fracture zones and transform faults. We build an integrated kinematic model for NW Africa, Morocco, Iberia, Europe, and North America, which shows that the deformation is partitioned between Pyrenees and Betic‐Rif orogenic domain during the Late Cretaceous‐Oligocene time interval. In the Eastern Betics domain, the calculated amount of NW Africa‐Iberia convergence is ~80 km between 83.5 and 34 Ma, followed by ~150 km since the Oligocene. The motion of Iberia relative to Europe in the Central Pyrenees is characterized by overall NE directed transpressional motion during the Campanian and the Paleocene, followed by NW directed transpressional movement until the Lutetian and overall NNW directed convergence from Bartonian to Chattian. This motion occurs along the axis of the Bay of Biscay from the Santonian–Campanian boundary to the middle Priabonian, subsequently jumping to King's Trough at Anomaly 17 (36.62 Ma).
We present and use the chronostratigraphy of 13 field logs and detailed mapping to constrain the evolution of the early Zagros foreland basin, in NW Iran. Large foraminifera, calcareous nannofossil, palynological and 87 Sr/ 86 Sr analysis supplied ages indicating a Campanian–early Eocene age of the basin infill, which is characterizd by a diachronous, southwestward migrating, shallowing upwards, mixed clastic–carbonate succession. Growth synclines and local palaeoslope variations indicate syndepositional folding from Maastrichtian to Eocene time and suggest forelandward migration of the deformation front. We also illustrate the basin architecture with a synthetic stratigraphic transect. From internal to external areas, time lines cross the formation boundaries from continental Kashkan red beds to Taleh Zang mixed clastic–carbonate platforms, Amiran slope deposits and basinal Gurpi–Pabdeh shales and marls. The foreland basin depocentres show a progressive migration from the Campanian to Eocene ( c . 83–52.7 Ma), with rates of c . 2.4 mm a −1 during the early–middle Palaeocene ( c . 65.5–58.7 Ma) increasing to c . 6 mm a −1 during the late Palaeocene–earliest Eocene ( c . 58.7–52.8 Ma). Coeval subsidence remained at c . 0.27 mm a −1 during the first 12.7 Ma and decreased to c . 0.16 mm a −1 during the last 4.2 Ma of basin filling. Finally, we integrate our results with published large-scale maps and discuss their implications in the context of the Zagros orogeny. Supplementary material: Tables with dating results are available at http://www.geolsoc.org.uk/SUP18439 .
Anticlines of the Lurestan Province in the Zagros fold–thrust belt have been studied by integrating field-based analysis with the use of high-resolution satellite images and data available from the literature. The distribution of folds in the southeastern Lurestan Province, expressed in terms of axial length and wavelength distribution, shows a direct link with the characteristics of the sedimentary multilayer in which the folds developed. Within the carbonate deposits of the Late Cretaceous Bangestan Group the transition from pelagic to neritic facies determines a threefold increase in anticline spacing and promotes the development of thrust structures in the forelimb of anticlines. The Oligocene–Miocene Shahbazan–Asmari unit folds harmonically with the Bangestan Group, except in the areas where the Palaeogene deposits interposed between the two units exceed 1300 m of thickness. In these areas the Shahbazan–Asmari carbonates display short-wavelength folds indicating a complete decoupling from the underlying folds of the Bangestan Group. It is suggested that this decoupling occurs because the summed thickness of the incompetent units separating the two carbonate units exceeds the extension of the zone of effective contact strain of the Bangestan Group folds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.