The emergence of flat bands and correlated behaviors in "magic angle" twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of ~0.93º, which is smaller than the magic angle by 15%. At an electron concentration of ±5 electrons/moiré unit cell, we observe a narrow resistance peak with an activation energy gap ~0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of ±12 electrons/moiré unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the "magic" range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG.
Electric-field-induced charge carriers typically exhibit greater mobility over carriers contributed by chemical dopants and offer a powerful mechanism for thermoelectric power factor enhancement. We fabricate multigated silicon nanowires (Si NWs) and demonstrate significant modulation of electrical conductivity and the Seebeck coefficient with gate bias. Because of the higher mobility of field-effect charge carriers, we demonstrate that power factor for the gated Si NWs is similar to the highest values reported for n-type Si nanostructures despite charge transport only occurring at the NW surface. Field-effect doping is a promising strategy for optimizing power factor and may result in significant power factor enhancement in smaller diameter Si NWs where high average carrier densities can be obtained with induced surface charge.
The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15) wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.