Today's social bots are sophisticated and sometimes menacing. Indeed, their presence can endanger online ecosystems as well as our society.
Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
Social media have been extensively praised for increasing democratic discussion on social issues related to policy and politics. However, what happens when this powerful communication tools are exploited to manipulate online discussion, to change the public perception of political entities, or even to try affecting the outcome of political elections? In this study we investigated how the presence of social media bots, algorithmically driven entities that on the surface appear as legitimate users, affect political discussion around the 2016 U.S. Presidential election. By leveraging state-of-the-art social bot detection algorithms, we uncovered a large fraction of user population that may not be human, accounting for a significant portion of generated content (about one-fifth of the entire conversation). We inferred political partisanships from hashtag adoption, for both humans and bots, and studied spatio-temporal communication, political support dynamics, and influence mechanisms by discovering the level of network embeddedness of the bots. Our findings suggest that the presence of social media bots can indeed negatively affect democratic political discussion rather than improving it, which in turn can potentially alter public opinion and endanger the integrity of the Presidential election.
Background At the time of this writing, the coronavirus disease (COVID-19) pandemic outbreak has already put tremendous strain on many countries' citizens, resources, and economies around the world. Social distancing measures, travel bans, self-quarantines, and business closures are changing the very fabric of societies worldwide. With people forced out of public spaces, much of the conversation about these phenomena now occurs online on social media platforms like Twitter. Objective In this paper, we describe a multilingual COVID-19 Twitter data set that we are making available to the research community via our COVID-19-TweetIDs GitHub repository. Methods We started this ongoing data collection on January 28, 2020, leveraging Twitter’s streaming application programming interface (API) and Tweepy to follow certain keywords and accounts that were trending at the time data collection began. We used Twitter’s search API to query for past tweets, resulting in the earliest tweets in our collection dating back to January 21, 2020. Results Since the inception of our collection, we have actively maintained and updated our GitHub repository on a weekly basis. We have published over 123 million tweets, with over 60% of the tweets in English. This paper also presents basic statistics that show that Twitter activity responds and reacts to COVID-19-related events. Conclusions It is our hope that our contribution will enable the study of online conversation dynamics in the context of a planetary-scale epidemic outbreak of unprecedented proportions and implications. This data set could also help track COVID-19-related misinformation and unverified rumors or enable the understanding of fear and panic—and undoubtedly more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.