In this work we have studied the Shannon information entropy for two hyperbolic single-well potentials in the fractional Schrödinger equation (the fractional derivative number (0<n≤2) by calculating position and momentum entropy. We find that the wave function will move towards the origin as the fractional derivative number n decreases and the position entropy density becomes more severely localized in more fractional system, i.e., for smaller values of n, but the momentum probability density becomes more delocalized. And then we study the Beckner Bialynicki-Birula–Mycieslki (BBM) inequality and notice that the Shannon entropies still satisfy this inequality for different depth u even though this inequality decreases (or increases) gradually as the depth u of the hyperbolic potential U1 (or U2) increases. Finally, we also carry out the Fisher entropy and observe that the Fisher entropy increases as the depth u of the potential wells increases, while the fractional derivative number n decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.