The physiological responses of habanero pepper plants (Capsicum chinense Jacq.) to foliar applications of zinc sulphate and zinc nano-fertilizer were evaluated in greenhouse trials. The effect of the supplement on fruit quality of habanero pepper was particularly observed. Habanero pepper plants were grown to maturity, and during the main stages of phenological development, they were treated with foliar applications of Zn at concentrations of 1000 and 2000 mg L−1 in the form of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (ZnO NPs). Additional Zn was not supplied to the control treatment plants. ZnO NPs at a concentration of 1000 mg L−1 positively affected plant height, stem diameter, and chlorophyll content, and increased fruit yield and biomass accumulation compared to control and ZnSO4 treatments. ZnO NPs at 2000 mg L−1 negatively affected plant growth but significantly increased fruit quality, capsaicin content by 19.3%, dihydrocapsaicin by 10.9%, and Scoville Heat Units by 16.4%. In addition, at 2000 ZnO NPs mg L−1 also increased content of total phenols and total flavonoids (soluble + bound) in fruits (14.50% and 26.9%, respectively), which resulted in higher antioxidant capacity in ABTS (2,2′azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (ferric reducing antioxidant power) (15.4%, 31.8%, and 20.5%, respectively). These results indicate that application of ZnO NPs could be employed in habanero pepper production to improve yield, quality, and nutraceutical properties of fruits.
The effects of zinc oxide nanoparticles on seed germination and seedling growth of Capsicum annuum L. were determined in this research. Total phenols content, total flavonoids, and condensed tannins, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity was determined. Results indicated that treatment with zinc oxide nanoparticles (ZnO-NPs) improved seed germination rate during the first seven days. The seed vigor germination increased 123.50%, 129.40% and 94.17% by treatment with ZnO-NPs suspensions at 100, 200 and 500 ppm, respectively. The morphological parameters tested revealed that ZnO-NPs treatments did not significantly affect plumule development, but they had a significant impact (p ≤ 0.01) on radicle length. Suspensions at 100, 200 and 500 ppm of ZnO-NPs inhibited seedling radicle growth and promoted accumulation of phenolic compounds, with a phytotoxic effect in this organ. Results suggested that zinc oxide nanoparticles influence seed vigor and seedling development and promoted the accumulation of desirable phenolic compounds in the radicle.
Optimum concentrations and/or sufficiency ranges of nutrients are useful for a correct diagnosis and improvement of nutrient status of cultivated plants. To develop boundary‐line approach (BLA) standards for Opuntia ficus‐indica L., a database of N, P, K, Ca, and Mg concentrations in 1‐year‐old cladodes and cladodes fresh‐matter yield was used. The BLA optimum concentrations (associated with estimated maximum yield) for O. ficus‐indica were: N = 13.1 g kg–1, P = 3.2 g kg–1, K = 44.4 g kg–1, Ca = 38.1 g kg–1, and Mg = 17.3 g kg–1. The BLA sufficiency ranges at 95% yield were 8.4–20.3 g kg–1 for N, 2.4–4.2 g kg–1 for P, 38.2–50.8 g kg–1 K, 31.8–45.2 g kg–1 for Ca, and 14.3–20.9 g kg–1 for Mg. The BLA standards are comparable to those obtained in a previous study using compositional‐nutrient‐diagnosis (CND) approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.