The adenomatous polyposis coli gene (APC) is mutated in most colon cancers. The APC protein binds to the cellular adhesion molecule beta-catenin, which is a mammalian homolog of ARMADILLO, a component of the WINGLESS signaling pathway in Drosophila development. Here it is shown that when beta-catenin is present in excess, APC binds to another component of the WINGLESS pathway, glycogen synthase kinase 3beta (GSK3beta), a mammalian homolog of Drosophila ZESTE WHITE 3. APC was a good substrate for GSK3 beta in vitro, and the phosphorylation sites were mapped to the central region of APC. Binding of beta-catenin to this region was dependent on phosphorylation by GSK3 beta.
Signal transduction by beta-catenin involves its posttranslational stabilization and downstream coupling to the Lef and Tcf transcription factors. Abnormally high amounts of beta-catenin were detected in 7 of 26 human melanoma cell lines. Unusual messenger RNA splicing and missense mutations in the beta-catenin gene (CTNNB1) that result in stabilization of the protein were identified in six of the lines, and the adenomatous polyposis coli tumor suppressor protein (APC) was altered or missing in two others. In the APC-deficient cells, ectopic expression of wild-type APC eliminated the excess beta-catenin. Cells with stabilized beta-catenin contained a constitutive beta-catenin-Lef-1 complex. Thus, genetic defects that result in up-regulation of beta-catenin may play a role in melanoma progression.
Context:Adrenal tumors have a prevalence of around 2% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2–11% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values.Objective:Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy.Design:Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19–84 yr) and 45 ACC patients (20–80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26–201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids.Results:Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88% (area under the curve = 0.96) when using only the nine most differentiating markers.Conclusions:Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas.
Cytochrome P450 3A4 induction by mitotane results in rapid inactivation of more than 50% of administered hydrocortisone, explaining the need for doubling hydrocortisone replacement in mitotane-treated patients. Strong inhibition of 5α-reductase activity is in line with the clinical observation of relative inefficiency of testosterone replacement in mitotane-treated men, calling for replacement by 5α-reduced androgens.
Signal transduction by beta-catenin involves its posttranslational stabilization and import to the nucleus where it interacts with transcription factors. Recent implications for beta-catenin signaling in cancer prompted us to examine colon cancer cell lines for the expression of LEF-1, a transcription factor that binds to beta-catenin. The analysis of several cell lines revealed the expression of LEF1 mRNA and a constitutive association of the LEF-1 protein with beta-catenin. In contrast to the colon cells, PC12 and 293 cells did not contain a beta-catenin-LEF-1 complex, even though both proteins were detected in cell lysates. In these cells, the association of endogenous LEF1 and beta-catenin was induced by stimulation with the wnt-1 proto-oncogene. The complex formed following transient stimulation with wnt-1 and also persisted in cells stably expressing wnt-1. Ectopic overexpression of beta-catenin in 293 cells also induced the assembly of the beta-catenin-LEF-1 complex and activated gene transcription from a LEF-1-dependent promotor. Expression of mutant oncogenic forms of beta-catenin identified in cancer cells resulted in higher levels of transcriptional activity. The results suggest that a cancer pathway driven by wnt-1, or mutant forms of beta-catenin, may involve the formation of a persistent transcriptionally active complex of beta-catenin and LEF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.