BackgroundAcid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG) neurons obtained from Wistar rats.ResultsBehavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase), and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ < 400 ms) ASIC currents in DRG neurons obtained from Wistar rats, with a nonsignificant action on ASIC currents with a slow desensitizing time-course. The action of thalassiolin B shows no pH or voltage dependence nor is it modified by steady-state ASIC desensitization or voltage. The high concentration of thalassiolin B in the extract may account for the antinociceptive action of BM-21.ConclusionsTo our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.
CgNa (Condylactis gigantea neurotoxin) is a 47-amino-acid- residue toxin from the giant Caribbean sea anemone Condylactis gigantea. The structure of CgNa, which was solved by 1H-NMR spectroscopy, is somewhat atypical and displays significant homology with both type I and II anemone toxins. CgNa also displays a considerable number of exceptions to the canonical structural elements that are thought to be essential for the activity of this group of toxins. Furthermore, unique residues in CgNa define a characteristic structure with strong negatively charged surface patches. These patches disrupt a surface-exposed cluster of hydrophobic residues present in all anemone-derived toxins described to date. A thorough characterization by patch-clamp analysis using rat DRG (dorsal root ganglion) neurons indicated that CgNa preferentially binds to TTX-S (tetrodotoxin-sensitive) voltage-gated sodium channels in the resting state. This association increased the inactivation time constant and the rate of recovery from inactivation, inducing a significant shift in the steady state of inactivation curve to the left. The specific structural features of CgNa may explain its weaker inhibitory capacity when compared with the other type I and II anemone toxins.
We have characterized the effects of BgII and BgIII, two sea anemone peptides with almost identical sequences (they only differ by a single amino acid), on neuronal sodium currents using the whole-cell patch-clamp technique. Neurons of dorsal root ganglia of Wistar rats (P5-9) in primary culture (LeibovitzЈs L15 medium; 37°C, 95% air/5% CO 2 ) were used for this study (n ϭ 154). These cells express two sodium current subtypes: tetrodotoxin-sensitive (TTX-S; K i ϭ 0.3 nM) and tetrodotoxinresistant (TTX-R; K i ϭ 100 M). Neither BgII nor BgIII had significant effects on TTX-R sodium current. Both BgII and BgIII produced a concentration-dependent slowing of the TTX-S sodium current inactivation (IC 50 ϭ 4.1 Ϯ 1.2 and 11.9 Ϯ 1.4 M, respectively), with no significant effects on activation time course or current peak amplitude. For comparison, the concentration-dependent action of Anemonia sulcata toxin II (ATX-II), a well characterized anemone toxin, on the TTX-S current was also studied. ATX-II also produced a slowing of the TTX-S sodium current inactivation, with an IC 50 value of 9.6 Ϯ 1.2 M indicating that BgII was 2.3 times more potent than ATX-II and 2.9 times more potent than BgIII in decreasing the inactivation time constant ( h ) of the sodium current in dorsal root ganglion neurons. The action of BgIII was voltage-dependent, with significant effects at voltages below Ϫ10 mV. Our results suggest that BgII and BgIII affect voltage-gated sodium channels in a similar fashion to other sea anemone toxins and ␣-scorpion toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.