The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers’ support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers’ well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker’s models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers’ health information towards a successful risk management strategy for safe industrial Cobot environments.
In recent years, engineering degree programs have become fundamental to the teaching of robotics and incorporate many fundamental STEM concepts. Some authors have proposed different platforms for teaching different topics related to robotics, but most of these platforms are not practical for classroom use. In the case of teaching autonomous navigation algorithms, the absence of platforms in classrooms limits learning because students are unable to perform practice activities or cannot evaluate and compare different navigation algorithms. The main contribution of this study is the implementation of a free platform for teaching autonomous-driving algorithms based on the Robot Operating System without the use of a physical robot. The authors present a case study using this platform as a teaching tool for instruction in two undergraduate robotic courses. Students evaluated the platform quantitatively and qualitatively. Our study demonstrates that professors and students can carry out different tests and compare different navigation algorithms to analyze their performance under the same conditions in class. In addition, the proposed platform provides realistic representations of environments and data visualizations. The results claim that the use of simulations helps students better understand the theoretical concepts, motivates them to pay attention, and increases their confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.