We perform hydro-and magnetohydrodynamical general relativistic simulations of a tidal disruption of a 0.1M red dwarf approaching a 10 5 M non-rotating massive black hole on a close (impact parameter β = 10) elliptical (eccentricity e = 0.97) orbit. We track the debris self-interaction, circularization, and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasispherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the hole. The effective viscosity in the debris disc stems from the original hydrodynamical turbulence, which dominates over the magnetic component. The radiative efficiency is very low because of low energetics of the gas crossing the horizon and large optical depth that results in photon trapping.
A generalized Newtonian potential is derived from the geodesic motion of test particles in Schwarzschild spacetime. This potential reproduces several relativistic features with higher accuracy than commonly used pseudo-Newtonian approaches. The new potential reproduces the exact location of the marginally stable, marginally bound, and photon circular orbits, as well as the exact radial dependence of the binding energy and the angular momentum of these orbits. Moreover, it reproduces the orbital and epicyclic angular frequencies to better than 6%. In addition, the spatial projections of general trajectories coincide with their relativistic counterparts, while the time evolution of parabolic-like trajectories and the pericentre advance of elliptical-like trajectories are both reproduced exactly. We apply this approach to a standard thin accretion disc and find that the efficiency of energy extraction agrees to within 3% with the exact relativistic value, while the energy flux per unit area as a function of radius is reproduced everywhere to better than 7%. As a further astrophysical application we implement the new approach within a smoothed particle hydrodynamics code and study the tidal disruption of a main sequence star by a supermassive black hole. The results obtained are in very good agreement with previous relativistic simulations of tidal disruptions in Schwarzschild spacetime. The equations of motion derived from this potential can be implemented easily within existing Newtonian hydrodynamics codes with hardly any additional computational effort. c 0000 RAS arXiv:1303.4068v2 [astro-ph.HE]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.