The ability to attend to target speech in background noise is an important skill, particularly for children who spend many hours in noisy environments. Intelligibility improves as a result of spatial or binaural unmasking in the free-field for normal-hearing children; however, children who use bilateral cochlear implants (BiCIs) demonstrate little benefit in similar situations. It was hypothesized that poor auditory attention abilities might explain the lack of unmasking observed in children with BiCIs. Target and interferer speech stimuli were presented to either or both ears of BiCI participants via their clinical processors. Speech reception thresholds remained low when the target and interferer were in opposite ears, but they did not show binaural unmasking when the interferer was presented to both ears and the target only to one ear. These results demonstrate that, in the most extreme cases of stimulus separation, children with BiCIs can ignore an interferer and attend to target speech, but there is weak or absent binaural unmasking. It appears that children with BiCIs mostly experience poor encoding of binaural cues rather than deficits in ability to selectively attend to target speech.
The measurement of pupil dilation has become a common way to assess listening effort. Pupillometry data are subject to artifacts, requiring highly contaminated data to be discarded from analysis. It is unknown how trial exclusion criteria impact experimental results. The present study examined the effect of a common exclusion criterion, percentage of blinks, on speech intelligibility and pupil dilation measures in 9 participants with single-sided deafness (SSD) and 20 participants with normal hearing. Participants listened to and repeated sentences in quiet or with speech maskers. Pupillometry trials were processed using three levels of blink exclusion criteria: 15%, 30%, and 45%. These percentages reflect a threshold for missing data points in a trial, where trials that exceed the threshold are excluded from analysis. Results indicated that pupil dilation was significantly greater and intelligibility was significantly lower in the masker compared with the quiet condition for both groups. Across-group comparisons revealed that speech intelligibility in the SSD group decreased significantly more than the normal hearing group from quiet to masker conditions, but the change in pupil dilation was similar for both groups. There was no effect of blink criteria on speech intelligibility or pupil dilation results for either group. However, the total percentage of blinks in the masker condition was significantly greater than in the quiet condition for the SSD group, which is consistent with previous studies that have found a relationship between blinking and task difficulty. This association should be carefully considered in future experiments using pupillometry to gauge listening effort.
IntroductionBilateral cochlear implants (BiCIs) can facilitate improved speech intelligibility in noise and sound localization abilities compared to a unilateral implant in individuals with bilateral severe to profound hearing loss. Still, many individuals with BiCIs do not benefit from binaural hearing to the same extent that normal hearing (NH) listeners do. For example, binaural redundancy, a speech intelligibility benefit derived from having access to duplicate copies of a signal, is highly variable among BiCI users. Additionally, patients with hearing loss commonly report elevated listening effort compared to NH listeners. There is some evidence to suggest that BiCIs may reduce listening effort compared to a unilateral CI, but the limited existing literature has not shown this consistently. Critically, no studies to date have investigated this question using pupillometry to quantify listening effort, where large pupil sizes indicate high effort and small pupil sizes indicate low effort. Thus, the present study aimed to build on existing literature by investigating the potential benefits of BiCIs for both speech intelligibility and listening effort.MethodsTwelve BiCI adults were tested in three listening conditions: Better Ear, Poorer Ear, and Bilateral. Stimuli were IEEE sentences presented from a loudspeaker at 0° azimuth in quiet. Participants were asked to repeat back the sentences, and responses were scored by an experimenter while changes in pupil dilation were measured.ResultsOn average, participants demonstrated similar speech intelligibility in the Better Ear and Bilateral conditions, and significantly worse speech intelligibility in the Poorer Ear condition. Despite similar speech intelligibility in the Better Ear and Bilateral conditions, pupil dilation was significantly larger in the Bilateral condition.DiscussionThese results suggest that the BiCI users tested in this study did not demonstrate binaural redundancy in quiet. The large interaural speech asymmetries demonstrated by participants may have precluded them from obtaining binaural redundancy, as shown by the inverse relationship between the two variables. Further, participants did not obtain a release from effort when listening with two ears versus their better ear only. Instead, results indicate that bilateral listening elicited increased effort compared to better ear listening, which may be due to poor integration of asymmetric inputs.
Web-based remote testing can increase access to clinically diverse populations in hearing research. However, whether remote testing affects data quality compared to in-lab testing is unknown. Data for binaural hearing tasks may be particularly vulnerable to commercial-grade hardware limitations and background noise from the testing environment. We replicated two published studies on binaural hearing abilities using a web-based behavioral experimental platform (Gorilla.sc). In Experiment 1, we replicated an experiment by Goupell et al. [JASA 133(4) (2013)] that tested intra-cranial lateralization to interaural time and level difference cues. In Experiment 2, we replicated an experiment by Goupell et al. [JASA 140(3) (2016)] that investigated binaural and contralateral unmasking of speech. Two groups of college-aged young adults were tested: one with verified normal hearing (NH) and one with self-reported NH. Testing took place in participants’ homes using their own computer and audio hardware. Performance was compared between the two groups of participants as well as with published data collected in-lab. For both experiments, performance was similar for in-lab and web-based remote testing. We found no effect of verified versus self-reported NH. These results suggest that remote testing may be a feasible option for binaural hearing experiments. [Work funded by NIH-NIDCD.]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.